Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 30, 2016
Accepted October 11, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Water vapor permeability, morphological properties, and optical properties of variably hydrolyzed poly(vinyl alcohol)/linear low-density polyethylene composite films
Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do 31056, Korea 1Department of Chemical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 03722, Korea
Korean Journal of Chemical Engineering, February 2017, 34(2), 539-546(8), 10.1007/s11814-016-0279-z
Download PDF
Abstract
Poly(vinyl alcohol) (PVA)/ linear low-density polyethylene (LLDPE) composite films were prepared using PVAs of various molecular weights and degrees of hydrolysis. The crystallinity, water permeability, mechanical properties, and optical properties of the composite films were analyzed based on the absorption properties of the different PVAs. The formation of the composite film became increasingly difficult with increase in the molecular weight and the degree of hydrolysis of PVA, because the resulting crystallinity increased the intramolecular hydrogen bonding of the hydroxyl groups on the main chains of PVA. The 4-98/LLDPE composite film absorbed water gradually and continuously for a long time, and its water vapor absorption rate was similar to that of the 4-88/LLDPE film but lower than that of the PVA 205/LLDPE film. The mechanical properties of the 4-98/LLDPE film were slightly better than those of the 4-88/LLDPE film but inferior to those of the PVA 205/LLDPE film.
Keywords
References
Oller S, Onate E, in Advanced models for finite element analysis of composite materials, 22 pp., Encyclopedia of Composites, 2nd Ed., Luigi Nicolais and Assunta Borzacchiello Eds., Wiley, New Jersey, U.S.A. (2013).
Shori S, Chen X, Peralta M, Gao H, Loye HCZ, Ploehn HJ, J. Appl. Polym. Sci., 132, 41867 (2015)
Kim D, Jung J, Park S, Seo J, J. Appl. Polym. Sci., 132, 41985 (2015)
Xianda Y, Anlai W, Suqin C, Desalination, 62, 293 (1987)
Yeun JH, Bang GS, Park BJ, Ham SK, Chang JH, J. Appl. Polym. Sci., 101(1), 591 (2006)
Su JF, Huang Z, Zhao YH, Yuan XY, Wang XY, Li M, Ind. Crop. Prod., 31, 266 (2010)
Wang J, Wang X, Xu C, Zhang M, Shang X, Polym. Int., 60, 816 (2011)
Strawhecker KE, Manias E, Chem. Mater., 12, 2934 (2000)
Zhu G, Wang F, Gao Q, Xu K, Kiu Y, Res. Chem. Intermed., Published Online (2013). (2013)
Yu YH, Lin CY, Yeh JM, Lin WH, Polymer, 44(12), 3553 (2003)
Deng Q, Li J, Yang J, Li D, Compos. Pt. A-Appl. Sci. Manuf., 67, 55 (2014)
Lin N, Huang J, Chang PR, Anderson DP, Yu J, J. Nanomater, Article ID 573687, 13 (2011).
Junkasem J, Rujiravanit R, Supaphol P, Nanotechnology, 17, 4519 (2006)
Ismail H, Nordin R, Ahmad Z, Rashid A, Iran. Polym. J., 19, 297 (2010)
Jang J, Lee DK, Polymer, 44(26), 8139 (2003)
Kim HM, Lee JK, Lee HS, Thin Solid Films, 519(22), 7766 (2011)
Kim HS, Kim S, Kim HJ, Yang HS, Thermochim. Acta, 451(1-2), 181 (2006)
Luyt AS, Hato MJ, J. Appl. Polym. Sci., 95, 1748 (2005)
ASTM D1003-13, ASTM International - Standards Worldwide, http://www.astm.org/ (2013).
Mark HF, Encyclopedia of Polymer Science and Technology, Concise 3rd Ed., Wiley, New Jersey, U.S.A. (2007).
Hassan CM, Peppas NA, Adv. Polym. Sci., 153, 37 (2000)
Nishio Y, Haratani T, Takahashi T, Macromolecules, 22, 2547 (1989)
Moly KA, Radusch HJ, Androsh R, Bhagawan SS, Thomas S, Eur. Polym. J., 41, 1410 (2005)
Rizzo P, Baione F, Guerra G, Martinotto L, Albizzati E, Macromolecules, 34(15), 5175 (2001)
Assender HE, Windle AH, Polymer, 39(18), 4303 (1998)
Ricciardi R, Auriemma F, De Rosa C, Laupretre F, Macromolecules, 37(5), 1921 (2004)
Strawhecker KE, Manias E, Macromolecules, 34(24), 8475 (2001)
Assender HE, Windle AH, Polymer, 39(18), 4295 (1998)
Badr Y, Ali Z, Zaharan AH, Khafagy RM, Polym. Int., 49, 1555 (2000)
Cozzolino CA, Blomfeldt TOJ, Nilsson F, Piga A, Piergiovanni L, Farris S, Colloids Surf. A: Physicochem. Eng. Asp., 403, 45 (2012)
Tanigami T, Yano K, Yamaura K, Matsuzawa S, Polymer, 36(15), 2941 (1995)
Hodge RM, Edward GH, Simon GP, Polymer, 37(8), 1371 (1996)
Hodge RM, Bastow TJ, Edward GH, Simon GP, Hill AJ, Macromolecules, 29(25), 8137 (1996)
Lee YJ, Park H, Ju M, Kim Y, Park J, Ai DV, Hussain SQ, Lee Y, Ahn S, Yi J, Energy, 66, 20 (2014)
Choi HY, Lee YS, J. Food Eng., 116(4), 829 (2013)
Shori S, Chen X, Peralta M, Gao H, Loye HCZ, Ploehn HJ, J. Appl. Polym. Sci., 132, 41867 (2015)
Kim D, Jung J, Park S, Seo J, J. Appl. Polym. Sci., 132, 41985 (2015)
Xianda Y, Anlai W, Suqin C, Desalination, 62, 293 (1987)
Yeun JH, Bang GS, Park BJ, Ham SK, Chang JH, J. Appl. Polym. Sci., 101(1), 591 (2006)
Su JF, Huang Z, Zhao YH, Yuan XY, Wang XY, Li M, Ind. Crop. Prod., 31, 266 (2010)
Wang J, Wang X, Xu C, Zhang M, Shang X, Polym. Int., 60, 816 (2011)
Strawhecker KE, Manias E, Chem. Mater., 12, 2934 (2000)
Zhu G, Wang F, Gao Q, Xu K, Kiu Y, Res. Chem. Intermed., Published Online (2013). (2013)
Yu YH, Lin CY, Yeh JM, Lin WH, Polymer, 44(12), 3553 (2003)
Deng Q, Li J, Yang J, Li D, Compos. Pt. A-Appl. Sci. Manuf., 67, 55 (2014)
Lin N, Huang J, Chang PR, Anderson DP, Yu J, J. Nanomater, Article ID 573687, 13 (2011).
Junkasem J, Rujiravanit R, Supaphol P, Nanotechnology, 17, 4519 (2006)
Ismail H, Nordin R, Ahmad Z, Rashid A, Iran. Polym. J., 19, 297 (2010)
Jang J, Lee DK, Polymer, 44(26), 8139 (2003)
Kim HM, Lee JK, Lee HS, Thin Solid Films, 519(22), 7766 (2011)
Kim HS, Kim S, Kim HJ, Yang HS, Thermochim. Acta, 451(1-2), 181 (2006)
Luyt AS, Hato MJ, J. Appl. Polym. Sci., 95, 1748 (2005)
ASTM D1003-13, ASTM International - Standards Worldwide, http://www.astm.org/ (2013).
Mark HF, Encyclopedia of Polymer Science and Technology, Concise 3rd Ed., Wiley, New Jersey, U.S.A. (2007).
Hassan CM, Peppas NA, Adv. Polym. Sci., 153, 37 (2000)
Nishio Y, Haratani T, Takahashi T, Macromolecules, 22, 2547 (1989)
Moly KA, Radusch HJ, Androsh R, Bhagawan SS, Thomas S, Eur. Polym. J., 41, 1410 (2005)
Rizzo P, Baione F, Guerra G, Martinotto L, Albizzati E, Macromolecules, 34(15), 5175 (2001)
Assender HE, Windle AH, Polymer, 39(18), 4303 (1998)
Ricciardi R, Auriemma F, De Rosa C, Laupretre F, Macromolecules, 37(5), 1921 (2004)
Strawhecker KE, Manias E, Macromolecules, 34(24), 8475 (2001)
Assender HE, Windle AH, Polymer, 39(18), 4295 (1998)
Badr Y, Ali Z, Zaharan AH, Khafagy RM, Polym. Int., 49, 1555 (2000)
Cozzolino CA, Blomfeldt TOJ, Nilsson F, Piga A, Piergiovanni L, Farris S, Colloids Surf. A: Physicochem. Eng. Asp., 403, 45 (2012)
Tanigami T, Yano K, Yamaura K, Matsuzawa S, Polymer, 36(15), 2941 (1995)
Hodge RM, Edward GH, Simon GP, Polymer, 37(8), 1371 (1996)
Hodge RM, Bastow TJ, Edward GH, Simon GP, Hill AJ, Macromolecules, 29(25), 8137 (1996)
Lee YJ, Park H, Ju M, Kim Y, Park J, Ai DV, Hussain SQ, Lee Y, Ahn S, Yi J, Energy, 66, 20 (2014)
Choi HY, Lee YS, J. Food Eng., 116(4), 829 (2013)