ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 15, 2016
Accepted November 5, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

CO2 capture performance of cement-modified carbide slag

School of Energy and Power Engineering, Shandong University, Jinan 250061, China 1State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Korean Journal of Chemical Engineering, February 2017, 34(2), 580-587(8), 10.1007/s11814-016-0315-z
downloadDownload PDF

Abstract

A novel and low-cost synthetic CO2 sorbent for calcium looping process, cement-modified carbide slag (CMCS), was synthesized from carbide slag, aluminate cement and by-product of biodiesel by combustion. The effects of synthesis conditions such as combustion temperature, combustion duration, hydration, by-product of biodiesel and cement addition and regeneration temperature on CO2 capture performance of CMCS were investigated. The comprehensively optimum preparation conditions of CMCS were obtained. The highest CO2 capture capacity is 0.62 g/g after 10 cycles, which is 2.18 times as high as that of carbide slag. The addition of aluminate cement improves the CO2 capture performance of CMCS, while excessive aluminate cement is adverse for CO2 capture due to the reduced CaO content in CMCS. The addition of by-product of biodiesel contributes to a uniform sol mixing of carbide slag and cement. The CMCS exhibits higher carbonation and calcination rates than CS. The porous and stable pore structure leads to the better CO2 capture performance and cyclic stability of CMCS.

References

He Z, Li Y, Liu C, J. Southeast Univ., 31, 204 (2015)
Wang A, Deshpande N, Fan LS, Energy Fuels, 29(1), 321 (2015)
Ackermann S, Sauvin L, Castiglioni R, Rupp JLM, Scheffe JR, Steinfeld A, J. Phys. Chem. C, 119, 16452 (2015)
Wang QH, Rong N, Fan HT, Meng YJ, Fang MX, Cheng LM, Cen KF, Int. J. Hydrog. Energy, 39(11), 5781 (2014)
Radfarnia HR, Sayari A, Chem. Eng. J., 262, 913 (2015)
Garcia-Lario AL, Aznar M, Martinez I, Grasa GS, Murillo R, Int. J. Hydrog. Energy, 40(1), 219 (2015)
Zhang XY, Li ZG, Peng Y, Su WK, Sun XX, Li JH, Chem. Eng. J., 243, 297 (2014)
Broda M, Muller CR, Fuel, 127, 94 (2014)
Broda M, Manovic V, Anthony EJ, Muller CR, Environ. Sci. Technol., 48, 5322 (2014)
Valverde JM, Perejon A, Perez-Maqueda LA, Environ. Sci. Technol., 46, 6401 (2012)
Zhang M, Peng Y, Sun Y, Li P, Yu J, Fuel, 111, 363 (2013)
Wu G, Zhang C, Li S, Huang Z, Yan S, Wang S, Ma X, Gong J, Energy Environ. Sci., 5, 8942 (2012)
Luo C, Zheng Y, Ding N, Wu Q, Zheng C, Chin. Chem. Lett., 22, 615 (2011)
Li YJ, Su MY, Xie X, Wu SM, Liu CT, Appl. Energy, 145, 60 (2015)
Kavosh M, Patchigolla K, Anthony EJ, Oakey JE, Appl. Energy, 131, 499 (2014)
Zhou ZM, Qi Y, Xie MM, Cheng ZM, Yuan WK, Chem. Eng. Sci., 74, 172 (2012)
Chen HC, Zhao CS, Yu WW, Appl. Energy, 112, 67 (2013)
Manovic V, Anthony EJ, Ind. Eng. Chem. Res., 48(19), 8906 (2009)
Manovic V, Anthony EJ, Environ. Sci. Technol., 43, 7117 (2009)
Manovic V, Anthony EJ, Energy Fuels, 23, 4797 (2009)
Qin CL, Yin JJ, An H, Liu WQ, Feng B, Energy Fuels, 26(1), 154 (2012)
Wu YH, Manovic V, He I, Anthony EJ, Fuel, 96(1), 454 (2012)
Li Y, Xie X, Sun R, Shi L, Proc. Chin. Soc. Electrical Eng., 34, 4447 (2014)
Li YJ, Wang WJ, Cheng XX, Su MY, Ma XT, Xie X, Fuel, 142, 21 (2015)
Sun RY, Li YJ, Zhao JL, Liu CT, Lu CM, Int. J. Hydrog. Energy, 38(31), 13655 (2013)
Li Y, Sun R, Liu C, Liu H, Lu C, Int. J. Greenh. Gas Con., 9, 117 (2012)
Ma JT, Li YJ, Shi L, He ZR, Wang ZY, Appl. Energy, 168, 85 (2016)
Liu WQ, An H, Qin CL, Yin JJ, Wang GX, Feng B, Xu MH, Energy Fuels, 26(5), 2751 (2012)
Li H, Niu S, Lu C, Liu M, Huo M, Sci. China Technol. Sc., 57, 438 (2014)
Thompson JC, He BB, Appl. Energy, 22, 261 (2006)
Hughes RW, Lu D, Anthony EJ, Wu YH, Ind. Eng. Chem. Res., 43(18), 5529 (2004)
Li YJ, Zhao CS, Qu CR, Duan LB, Li QZ, Liang C, Chem. Eng. Technol., 31(2), 237 (2008)
Chang PH, Huang WC, Lee TJ, Chang YP, Chen SY, ACS Appl. Mater. Int., 7, 6172 (2015)
Barelli L, Bidini G, Di Michele A, Gallorini F, Petrillo C, Sacchetti F, Appl. Energy, 127, 81 (2014)
Luo C, Zheng Y, Ding N, Wu QL, Bian GA, Zheng CG, Ind. Eng. Chem. Res., 49(22), 11778 (2010)
Perejon A, Romeo LM, Lara Y, Lisbona P, Martinez A, Valverde JM, Appl. Energy, 162, 787 (2016)
Chen HC, Zhang PP, Duan YF, Zhao CS, Appl. Energy, 162, 390 (2016)
Luo C, Zheng Y, Xu Y, Ding H, Zheng C, Qin C, Feng B, Korean J. Chem. Eng., 32(5), 934 (2015)
Sun J, Liu WQ, Hu YC, Li MK, Yang XW, Zhang Y, Xu MH, Energy Fuels, 29(10), 6636 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로