ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 5, 2016
Accepted October 24, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of acid sites on catalytic destruction of trichloroethylene over solid acid catalysts

Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, P. R. China 1Key Lab for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
daiqg@ecust.edu.cn
Korean Journal of Chemical Engineering, March 2017, 34(3), 664-671(8), 10.1007/s11814-016-0299-8
downloadDownload PDF

Abstract

The catalytic destruction of trichloroethylene (TCE) over several solid acid catalysts (HZSM-5, γ-Al2O3 and SBA-15/P) was evaluated under dry conditions. The activity order was found to be: HZSM-5>SBA-15/P>γ-Al2O3. It was reported that Brønsted and Lewis acid sites of catalysts both played an important role on TCE catalytic destruction, while the Brønsted acid sites were more decisive. Additionally, the formation of the polychlorinated by-product (tetrachloroethylene, PCE) over HZSM-5 and γ-Al2O3 catalysts was observed and attributed to the presence of Lewis acid sites and basic O2-, and PCE was not detected over SBA-15/P catalyst due to the presence of only Brønsted acid sites. The TCE/O2-TPSR studies demonstrated that the main oxidation products during TCE catalytic destruction are CO, CO2 and Cl2, and the carbon in TCE was firstly converted to CO and then further oxidized into CO2 by gas phase O2.

References

Gonzalez-Velasco JR, Aranzabal A, Gutierrez-Ortiz JI, Lopez-Fonseca R, Gutierrez-Ortiz MA, Appl. Catal. B: Environ., 19(3-4), 189 (1998)
Aranzabal A, Ayastuy-Arizti JL, Gonzalez-Marcos JA, Gonzalez-Velasco JR, J. Catal., 214(1), 130 (2003)
Kulazynski M, van Ommen JG, Trawczynski J, Walendziewski J, Appl. Catal. B: Environ., 36(3), 239 (2002)
Liu XL, Zeng JL, Wang J, Shi WB, Zhu TY, Catal. Sci. Technol., 6, 4337 (2016)
Park JE, Kim BB, Park ED, Korean J. Chem. Eng., 32(11), 2212 (2015)
Aranzabal A, Ayastuy-Arizti JL, Gonzalez-Marcos JA, Gonzalez-Velasco JR, J. Catal., 214(1), 130 (2003)
Ma XD, Zhao MY, Pang Q, Zheng MH, Sun HW, Crittenden J, Zhu YY, Chen YS, Appl. Catal. A: Gen., 522, 70 (2016)
Shi ZN, Yang P, Tao F, Zhou RX, Chem. Eng. J., 295, 99 (2016)
Greene HL, Prakash DS, Athota KV, Appl. Catal. B: Environ., 7(3-4), 213 (1996)
Atwood GA, Greene HL, Chintawar P, Rachapudi R, Ramachandran B, Vogel CA, Appl. Catal. B: Environ., 18(1-2), 51 (1998)
Padilla AM, Corella J, Toledo JM, Appl. Catal. B: Environ., 22(2), 107 (1999)
Cao S, Wang HQ, Yu FX, Shi MP, Chen S, Weng XL, Liu Y, Wu ZBA, J. Colloid Interface Sci., 463, 233 (2016)
Yang P, Zuo SF, Shi ZN, Tao F, Zhou RX, Appl. Catal. B: Environ., 191, 53 (2016)
Ramachandran B, Greene HL, Chatterjee S, Appl. Catal. B: Environ., 8(2), 157 (1996)
Ren YP, Tang AD, Hu LQ, Xiang H, RSC Adv., 6, 46822 (2016)
Jeon SW, Lee JE, Park JK, Kim SH, Korean J. Chem. Eng., 32(2), 230 (2015)
Rachapudi R, Chintawar PS, Greene HL, J. Catal., 185(1), 58 (1999)
Jeong KE, Kim DC, Ihm SK, Catal. Today, 87(1-4), 29 (2003)
Jeong KE, Kim DC, Ihm SK, Catal. Today, 87(1-4), 29 (2003)
Sun PF, Wang WL, Dai XX, Weng XL, Wu ZB, Appl. Catal. B: Environ., 198, 389 (2016)
Bai SX, Shi BB, Deng W, Dai QG, Wang XY, RSC Adv., 5, 48916 (2015)
de Rivas B, Sampedro C, Lopez-Fonseca R, Gutierrez-Ortiz MA, Gutierrez-Ortiz JI, Appl. Catal. A: Gen., 417-418, 93 (2012)
Tseng TK, Wang L, Ho CT, Chu H, J. Hazard. Mater., 178(1-3), 1035 (2010)
Huang QQ, Xue XM, Zhou RX, J. Mol. Catal. A-Chem., 331(1-2), 130 (2010)
Guillemot M, Mijoin J, Mignard S, Magnoux P, Microporous Mesoporous Mater., 111, 334 (2008)
Swanson ME, Greene HL, Qutubuddin S, Appl. Catal. B: Environ., 52(2), 91 (2004)
Karmakar S, Greene HL, J. Catal., 138, 364 (1992)
Tajima M, Niwa M, Fujii Y, Koinuma Y, Aizawa R, Kushiyama S, Kobayashi S, Mizuno K, Ohuchi H, Appl. Catal. B: Environ., 9(1-4), 167 (1996)
Storaro L, Ganzerla R, Lenarda M, Zanoni R, Jimenez-Lopez A, Rodriguez-Castellon PE, J. Mol. Catal. A-Chem., 115, 329 (1997)
Hoo P, Abdullah AZ, Korean J. Chem. Eng., 33(4), 1200 (2016)
Sabri AA, Albayati TM, Alazawi RA, Korean J. Chem. Eng., 32(9), 1835 (2015)
Kawi S, Shen SC, Chew PL, J. Mater. Chem., 12, 1582 (2002)
Chintawar PS, Greene HL, Appl. Catal. B: Environ., 13(2), 81 (1997)
Xiao FS, Han Y, Qiu SL, Chem. J. Chin. Univ., 23, 1847 (2002)
Li D, Zheng Y, Wang XY, Appl. Catal. A: Gen., 340(1), 33 (2008)
Feijen-Jeurissen MMR, Jorna JJ, Nieuwenhuys BE, Sinquin G, Petit C, Hindermann JP, Catal. Today, 54(1), 65 (1999)
Ballinger TH, Yates JT, J. Phys. Chem., 96, 1417 (1992)
Beck U, Ullmann’s Encyclopedia of Industrial Chemistry, VCH Publishers, New York (1986).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로