ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 2, 2016
Accepted November 20, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Two-stage cracking catalyst of amorphous silica-alumina on Y zeolite for enhanced product selectivity and suppressed coking

1Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P. O. Box 11155/4563, Tehran, Iran 2Oil and Gas Center of Excellence, University of Tehran, P. O. Box 11155/4563, Tehran, Iran
khodadad@ut.ac.ir
Korean Journal of Chemical Engineering, March 2017, 34(3), 681-691(11), 10.1007/s11814-016-0327-8
downloadDownload PDF

Abstract

A novel bilayer catalyst composed of amorphous silica-alumina (ASA) layer coated on Y zeolite layer is proposed as a fluid catalytic cracking (FCC) catalyst to cause two-stage reactions of pre-cracking and deep-cracking. The bilayer catalyst (Y/ASA) is compared with the usual mixed one (ASA+Y), in catalytic cracking of a feed composed of 1,3,5-triisopropylbenzene and naphthalene. The two catalyst representations were prepared by applying layers of Y zeolite and ASA or both on inert monolith supports. Catalytic cracking experiments were carried out at 300, 350 and 400 oC. Compared to Y+ASA, Y/ASA yielded about 33% and 46% more benzene and toluene, respectively, and 18% less coke in the catalytic cracking at 350 °C. The coke of Y/ASA was less refractory than that of Y+ASA as burnt at lower temperatures, while emitting less carbon monoxide in regeneration. Y/ASA configuration shows promising features as FCC catalysts for increased bottoms cracking and suppressed coking.

References

Sadeghbeigi R, Fluid catalytic cracking handbook: An expert guide to the practical operation, design, and optimization of FCC units, Elsevier (2012).
Cheng WC, Habib ET, Rajagopalan K, Roberie TG, Wormsbecher RF, Ziebarth MS, Fluid catalytic cracking, Handbook of Heterogeneous Catalysis (2008).
Li ZK, Wang G, Liu YD, Gao JS, Xu CM, Liang YM, Wang XQ, Fuel Process. Technol., 115, 1 (2013)
Wang G, Li ZK, Liu YD, Gao JS, Xu CM, Lan XY, Ning GQ, Liang YM, Ind. Eng. Chem. Res., 51(5), 2247 (2012)
Jimenez-Garcia G, de Lasa H, Quintana-Solorzano R, Maya-Yescas R, Fuel, 110, 89 (2013)
O’Connor P, Yanik S, Stud. Surf. Sci. Catal., 100, 323 (1996)
Ino T, Alkhattaf S, Appl. Catal. A: Gen., 142(1), 5 (1996)
Chen WZ, Han DM, Sun XH, Li CY, Fuel, 106, 498 (2013)
Leydier F, Chizallet C, Chaumonnot A, Digne M, Soyer E, Quoineaud AA, Costa D, Raybaud P, J. Catal., 284(2), 215 (2011)
Shimada I, Takizawa K, Fukunaga H, Takahashi N, Takatsuka T, Fuel, 161, 207 (2015)
Lee KH, Ha BH, Korean J. Chem. Eng., 15(5), 533 (1998)
Wang B, Han CY, Zhang Q, Li CY, Yang CH, Shan HH, Energy Fuels, 29(9), 5701 (2015)
Hosseinpour N, Mortazavi Y, Bazyari A, Khodadadi AA, Fuel Process. Technol., 90(2), 171 (2009)
Jia L, Sun X, Ye X, Zou C, Gu H, Huang Y, Niu G, Zhao D, Microporous Mesoporous Mater., 176, 16 (2013)
Liu X, Yang T, Bai P, Han L, Microporous Mesoporous Mater., 181, 116 (2013)
Aghakhani MS, Khodadadi AA, Najafi S, Mortazavi Y, J. Ind. Eng. Chem., 20(5), 3037 (2014)
Psarras AC, Iliopouiou EF, Nalbandian L, Lappas AA, Pouwels C, Catal. Today, 127(1-4), 44 (2007)
Bazyari A, Khodadadi AA, Hosseinpour N, Mortazavi Y, Fuel Process. Technol., 90(10), 1226 (2009)
Tonetto G, Atias J, de Lasa H, Appl. Catal. A: Gen., 270(1-2), 9 (2004)
Al-Khattaf S, Atias JA, Jarosch K, de Lasa H, Chem. Eng. Sci., 57(22-23), 4909 (2002)
Al-Khattaf S, Odedairo T, Balasamy RJ, Can. J. Chem. Eng., 91(4), 607 (2013)
Falco M, Morgado E, Amadeo N, Sedran U, Appl. Catal. A: Gen., 315, 29 (2006)
Mahgoub KA, Al-Khattaf S, Energy Fuels, 19(2), 329 (2005)
Pujro R, Falco M, Sedran U, Energy Fuels, 29(3), 1543 (2015)
Chen GM, Zhang XW, Mi ZT, J. Fuel. Chem. Technol., 35, 211 (2007)
Andreu P, Catal. Lett., 22, 135 (1993)
Beers AEW, Nijhuis TA, Aalders N, Kapteijn F, Moulijn JA, Appl. Catal. A: Gen., 243(2), 237 (2003)
Zamaro JM, Ulla MA, Miro EE, Chem. Eng. J., 106(1), 25 (2005)
Beers A, Nijhuis T, Kapteijn F, Moulijn J, Microporous Mesoporous Mater., 48, 279 (2001)
Sohn JR, DeCanio SJ, Fritz PO, Lunsford JH, J. Phys. Chem., 90, 4847 (1986)
Katada N, Kageyama Y, Niwa M, J. Phys. Chem. B, 104(31), 7561 (2000)
Costa AF, Cerqueira HS, Sousa-Aguiar EF, Ludvig MM, Performance of FCC catalysts prepared with sub-micron Y zeolite, in: M. C. E. van Steen, L. H. Callanan (Eds.) Studies in Surface Science and Catalysis, Elsevier, 2296 (2004).
Sombatchaisak S, Praserthdam P, Chaisuk C, Panpranot J, Ind. Eng. Chem. Res., 43(15), 4066 (2004)
Kerssens MM, Sprung C, Whiting GT, Weckhuysen BM, Microporous Mesoporous Mater., 189, 136 (2014)
Al-Khattaf S, de Lasa H, Appl. Catal. A: Gen., 226(1-2), 139 (2002)
Frunz L, Prins R, Pirngruber GD, Microporous Mesoporous Mater., 88, 152 (2006)
Tsai TC, Liu SB, Wang IK, Appl. Catal. A: Gen., 181(2), 355 (1999)
Al-Khattaf S, Energy Fuels, 22(6), 3612 (2008)
O'Connor P, Verlaan JPJ, Yanik SJ, Catal. Today, 43(3-4), 305 (1998)
Wang BD, Manos G, Chem. Eng. J., 142(2), 217 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로