ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 24, 2016
Accepted November 20, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Comparison of metabolite profiling of Ralstonia eutropha H16 phaBCA mutants grown on different carbon sources

1Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea 2CJ Research Institute of Biotechnology, Suwon 16495, Korea 3Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea 4, Korea
jinwonlee@sogang.ac.kr
Korean Journal of Chemical Engineering, March 2017, 34(3), 797-805(9), 10.1007/s11814-016-0333-x
downloadDownload PDF

Abstract

Metabolite profiling was conducted to monitor the metabolic differences of the Ralstonia eutropha H16, polyhydroxybutyrate (PHB) producing strain, when grown on different sole carbon sources and to identify the effect of the deletion of the PHB production pathway. The combination of rapid filtration and boiling ethanol extraction successfully extracted intracellular metabolites. Accumulation of acetyl-CoA was detected when the strain was grown on fructose. Whereas, lower adenylate energy charge (AEC) ratio and cell mass was identified on the cells grown on acetate. No significant difference was detected between the wild type and mutant strain except metabolites in the PHB synthetic pathway. Increased PHB production is expected on fructose due to the accumulation of AcCoA, while it is more difficult to improve the production on acetate because of lower metabolic precursor level and AEC ratio.

References

Chanprateep S, J. Biosci. Bioeng., 110(6), 621 (2010)
Chen GQ, Microbiol. Monograph., 14, 17 (2010)
Koller M, Salerno A, Muhr A, Reiterer A, Braunegg G, Mater. Technol., 47, 5 (2013)
Fukui T, Chou K, Harada K, Orita I, Nakayama Y, Bamba T, Nakamura S, Fukusaki E, Metabolomics, 10, 190 (2014)
Leaf TA, Srienc F, Biotechnol. Bioeng., 57(5), 557 (1998)
Rehm BHA, Biochem. J., 376, 15 (2003)
Pena C, Castillo T, Garcia A, Millan M, Segura D, Microb. Biotechnol., 7, 278 (2014)
Segura D, Espin G, Appl. Microbiol. Biotechnol., 65(4), 414 (2004)
Noguez R, Segura D, Moreno S, Hernandez A, Juarez K, Espin G, J. Mol. Microbiol. Biotechnol., 15, 244 (2008)
Pena C, Lopez S, Garcia A, Espin G, Romo-Uribe A, Segura D, Ann. Microbiol., 64, 39 (2014)
Akiyama M, Tsuge T, Doi Y, Polym. Degrad. Stabil., 80, 183 (2003)
Budde CF, Riedel SL, Hubner F, Risch S, Popovic MK, Rha C, Sinskey AJ, Appl. Microbiol. Biotechnol., 89(5), 1611 (2011)
Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZAM, Rha C, Sinskey AJ, Biotechnol. Bioeng., 109(1), 74 (2012)
Fiehn O, Plant Mol. Biol., 48, 155 (2002)
Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ, Biotechnol. Lett., 29(1), 1 (2007)
Vuckovic D, Anal. Bioanal. Chem., 403, 1523 (2012)
Kim S, Lee DY, Wohlgemuth G, Park HS, Fiehn O, Kim KH, Anal. Chem., 85, 2169 (2013)
Wang XY, Yang FX, Zhang YS, Xu GW, Liu Y, Tian J, Gao P, Electrophoresis, 36(18), 2140 (2015)
Lee HM, Jeon BY, Oh MK, Biotechnol. Bioproc. Eng., 21(3), 402 (2016)
Buescher JM, Moco S, Sauer U, Zamboni N, Anal. Chem., 82, 4403 (2010)
Friedman M, J. Agric. Food Chem., 52, 385 (2004)
Saratale GD, Oh MK, Int. J. Biol. Macromol., 80, 627 (2015)
Gonzalez B, Francois J, Renaud M, Yeast, 13, 1347 (1997)
Jensen NBS, Jokumsen KV, Villadsen J, Biotechnol. Bioeng., 63(3), 356 (1999)
Maharjan RP, Ferenci T, Anal. Biochem., 313, 145 (2003)
Alvarez-Sanchez B, Priego-Capote F, Luque de Castro MD, Trends Analyt. Chem., 29, 120 (2010)
Winder CL, Dunn WB, Schuler S, Broadhurst D, Jarvis R, Stephens GM, Goodacre R, Anal. Chem., 80, 2939 (2008)
Douma RD, de Jonge LP, Jonker CTH, Seifar RM, Heijnen JJ, van Gulik WM, Biotechnol. Bioeng., 107(1), 105 (2010)
De Jonge LP, Douma RD, Heijnen JJ, Van Gulik WM, Metabolomics, 8, 727 (2012)
Van Gulik WM, Curr. Opin. Biotechnol., 21, 27 (2010)
Wittmann C, Kromer JO, Kiefer P, Binz T, Heinzle E, Anal. Biochem., 327, 135 (2004)
Tredwell GD, Edwards-Jones B, Leak DJ, Bundy JG, Plos One, 6 (2011)
Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbuchel A, Friedrich B, Bowien B, Nat. Biotechnol., 25, 478 (2007)
Yu J, Si YT, Biotechnol. Prog., 20(4), 1015 (2004)
Gottschalk G, Schlegel HG, Eberhardt U, Arch. Microbiol., 48, 95 (1964)
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ, J. Biotechnol., 104, 99 (2003)
Oh MK, Rohlin L, Kao KC, Liao JC, J. Biol. Chem., 277, 13175 (2002)
Chapman AG, Fall L, Atkinson DE, J. Bacteriol., 108, 1072 (1971)
Wang ZX, Bramer CO, Steinbuchel A, FEMS Microbiol. Lett., 228, 63 (2003)
Kornberg HL, Krebs HA, Nature, 179, 988 (1957)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로