ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 21, 2016
Accepted October 24, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The influence of nanoparticles on gas transport properties of mixed matrix membranes: An experimental investigation and modeling

Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran 1Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran 2Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran 3Faculty of Mechanical Engineering-Energy Division, K.N. Toosi University of Technology, Tehran, Iran
v.pirouzfar@iauctb.ac.ir
Korean Journal of Chemical Engineering, March 2017, 34(3), 829-843(15), 10.1007/s11814-016-0302-4
downloadDownload PDF

Abstract

Mixed matrix membranes were made of polysulfone and Matrimid® polymers, and SiO2 and TiO2 nanoparticles in order to improve the efficiency of polymeric membrane in gas separation and review the efficiency of membrane separation process, laboratory. The modeling results of selectivity and permeability of gases O2, N2, CO2 and CH4 were discussed for different membranes. Another objective of this study was to submit a report on the importance of the statistical analysis and modeling in design and optimizing mixed matrix membranes to separate gas. The D-optimal method was applied to model and optimize the selectivity and permeability due to the main parameters. The obtained results indicated that the permeability of all gases demonstrated an ascending trend when the nanoparticles were increased. Under optimized conditions, the permeability of the gases O2, N2, CO2, CH4 in the membrane of PSF (12)/SiO2 (13.82) was 2.49, 1.113, 12.82 and 0.885 Barrer, respectively. A statistical method was practiced in the current research to design, optimize and separate gas membranes through effective efficiency for different applications.

References

Semsarzadeh MA, Ghalei B, Fardi M, Esmaeeli M, Vakili E, Korean J. Chem. Eng., 31(5), 841 (2014)
Jomekian A, Mansoori SAA, Monirimanesh N, Shafiee A, Korean J. Chem. Eng., 28(10), 2069 (2011)
Halek FS, Farahani SK, Hosseini SM, Korean J. Chem. Eng., 33(2), 629 (2016)
Bagheripour E, Moghadassi A, Hosseini SM, Korean J. Chem. Eng., 33(4), 1462 (2016)
Nabian N, Ghoreyshi AA, Rahimpour A, Shakeri M, Korean J. Chem. Eng., 32(11), 2204 (2015)
Zhuang GL, Wey MY, Tseng HH, Chem. Eng. Res. Des., 104, 319 (2015)
Pirouzfar V, Hosseini SS, Omidkhah MR, Moghaddam AZ, Polym. Eng. Sci., 54(1), 147 (2014)
Hosseini SS, Omidkhah MR, Moghaddam AZ, Pirouzfar V, Krantz WB, Tan NR, Sep. Purif. Technol., 122, 278 (2014)
Zulhairun AK, Ismail AF, Matsuura T, Abdullah MS, Mustafa A, Chem. Eng. J., 241, 495 (2014)
Kuehne DL, Friedlander SK, Ind. Eng. Chem. Process Des. Dev., 19, 609 (1980)
Park HB, Kim JK, Nam SY, Lee YM, J. Membr. Sci., 220(1-2), 59 (2003)
Budd PM, Msayib KJ, Tattershall CE, Ghanem BS, Reynolds KJ, McKeown NB, Fritsch D, J. Membr. Sci., 251(1-2), 263 (2005)
Niwa M, Kawakami H, Kanamori T, Shinbo T, Kaito A, Nagaoka S, Macromolecules, 34(26), 9039 (2001)
Soroko I, Livingston A, J. Membr. Sci., 343(1-2), 189 (2009)
Diestel L, Wang NY, Schulz A, Steinbach F, Caro J, Ind. Eng. Chem. Res., 54(3), 1103 (2015)
Heuchel M, Hofmann D, Desalination, 144(1-3), 67 (2002)
Frimpong S, Plank CA, Laukhuf WLS, Chem. Eng. J., 47(2), 63 (1991)
Song HJ, Jo YJ, Kim SY, Lee J, Kim CK, J. Membr. Sci., 466, 173 (2014)
Mollahosseini A, Rahimpour A, Jahamshahi M, Peyravi M, Khavarpour M, Desalination, 306, 41 (2012)
Kim S, Marand E, Microporous Mesoporous Mater., 114(1-3), 129 (2008)
Esfahani MR, Tyler JL, Stretz HA, Wells MJM, Desalination, 372, 47 (2015)
Ahn JY, Chung WJ, Pinnau I, Guiver MD, J. Membr. Sci., 314(1-2), 123 (2008)
Merkel TC, He ZJ, Pinnau I, Freeman BD, Meakin P, Hill AJ, Macromolecules, 36(22), 8406 (2003)
Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ, Science, 296, 519 (2002)
Matteucci S, Kusuma VA, Swinnea S, Freeman BD, Polymer, 49(3), 757 (2008)
Moghadam F, Omidkhah MR, Vasheghani-Farahani E, Pedram MZ, Dorosti F, Sep. Purif. Technol., 77(1), 128 (2011)
Duthie X, Kentish S, Powell C, Nagai K, Qiao G, Stevens G, J. Membr. Sci., 294(1-2), 40 (2007)
Pirouzfar V, Mosalmani M, Mortezaei M, Iran. Polym. J., 24(10), 829 (2015)
Anderson CJ, Pas SJ, Arora G, Kentish SE, Hill AJ, Sandler SI, Stevens GW, J. Membr. Sci., 322(1), 19 (2008)
Azeman M, Madzlan A, Fauzi IA, Hasrinah H, Suhaila S, Abdul Rahman H, Development of asymmetric carbon hollow fiber membrane for gas separation, Project Report, Universiti Teknologi Malaysia (2006).
Khayet M, Cojocaru C, Garcia-Payo MC, J. Membr. Sci., 351(1-2), 234 (2010)
Onsekizoglu P, Bahceci KS, Acar J, J. Membr. Sci., 349(1-2), 225 (2010)
Su J, Lua AC, J. Membr. Sci., 278(1-2), 335 (2006)
Pirouzfar V, Hosseini SS, Omidkhah MR, Moghaddam AZ, Ind. Eng. Chem. Res., 40(3), 1061 (2014)
Standard test methods for specific gravity (relative density) and density of plastics by displacements. ASTM annual book of standards; 1993. D-792.
Bondi A, J. Phys. Chem., 68, 441 (1964)
Lua AC, Su J, Carbon, 44, 2964 (2006)
Tin PS, Chung TS, Liu Y, Wang R, Carbon, 42, 3123 (2004)
Hosseini SS, Chung TS, J. Membr. Sci., 328(1-2), 174 (2009)
Kilic A, Atalay-Oral C, Sirkecioglu A, Tantekin-Ersolmaz SB, Ahunbay MG, J. Membr. Sci., 489, 81 (2015)
Ge L, Zhu Z, Li F, Liu S, Wang L, Tang X, Rudolph V, J. Phys. Chem. C, 115, 6661 (2011)
Wijenayake SN, Panapitiya NP, Versteeg SH, Nguyen CN, Goel S, Balkus KJ, Musselman IH, Ferraris JP, Ind. Eng. Chem. Res., 52(21), 6991 (2013)
Nematollahi MH, Dehaghani AHS, Abedini R, Korean J. Chem. Eng., 33(2), 657 (2016)
Nematollahi MH, Dehaghani AHS, Pirouzfar V, Akhondi E, Macromol. Res., 24(9), 782 (2016)
Soleymanipour SF, Dehaghani AHS, Pirouzfar V, Alihosseini A, J. Appl. Polym. Sci., DOI:10.1002/app.43839. (2016)
Pakizeh M, Ofoghi S, Shooshtari SHR, Korean J. Chem. Eng., DOI:10.1007/s11814-016-0166-7. (2016)
Moon JH, Ahn H, Hyun SH, Lee CH, Korean J. Chem. Eng., 21(2), 477 (2004)
Arjmandi M, Pakizeh M, Pirouzram O, Korean J. Chem. Eng., 32(6), 1178 (2015)
Moochani M, Moghadassi A, Hosseini SM, Bagheripour E, Parvizian F, Korean J. Chem. Eng., 33(9), 2674 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로