ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 5, 2016
Accepted November 20, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of hydrophobic modification on the structure and rheology of aqueous and brine solutions of scleroglucan polymer

Department of Polymer Reactions Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-143, Tehran, Iran 1Chemicals, Polymers & Petrochemicals Technology Development Division, Research Institute of Petroleum Industries (RIPI), 14665-137, Tehran, Iran
asharif@modares.ac.ir
Korean Journal of Chemical Engineering, March 2017, 34(3), 903-912(10), 10.1007/s11814-016-0322-0
downloadDownload PDF

Abstract

Amphiphilic scleroglucans were synthesized by grafting hydrophobic stearate groups in various densities onto the polysaccharide under its triple-helix conformation. Furthermore, a polyelectrolyte was obtained by attaching ionic-sulfonic groups to the hydrophobically modified scleroglucan. Rheological measurements demonstrated the role of grafted stearates in helix-coil transition of scleroglucan and in reducing the viscosity of scleroglucan in pure aqueous and brine solutions. Nevertheless, grafting the ionic-sulfonic groups caused a substantial recovery of the lost viscosity, especially in brine solution at 90 °C, while keeping the amphiphilic character of the hydrophobically modified scleroglucan. Additionally, the hydrophobic modification altered the adsorption behavior of scleroglucan on oil-reservoir rock surfaces: the higher the grafting density, the greater the adsorption amount. However, the polyelectrolyte sample showed the lowest adsorption among all modified samples. Finally, the modified scleroglucans are promising candidates for enhanced oil recovery applications.

References

Lee CM, Jeong HJ, Kim DW, Lee KY, Macromol. Res., 216, 429 (2008)
Chen X, Zhang L, Cheung PCK, Int. Immunopharmacol., 10, 398 (2010)
Yang L, Zhao T, Wei H, Zhang M, Zou Y, Mao G, Wu X, Int. J. Biol. Macromol., 49, 1124 (2011)
Kamal MS, Sultan AS, Al-Mubaiyedh UA, Hussein IA, Polym. Rev., 55, 491 (2015)
Kjøniksen AL, Beheshti N, Kotlar HK, Zhu K, Nystrom B, Eur. Polym. J., 44, 959 (2008)
Nystrom B, Kjøniksen AL, Iversen C, Adv. Colloid Interface Sci., 79, 81 (1999)
Alban S, Schauerte A, Franz G, Carbohydr. Polym., 47, 267 (2002)
Vinarta SC, Delgado OD, Figueroa LI, Farina JI, Carbohydr. Polym., 94, 496 (2013)
Bluhm TL, Deslandes Y, Marchessault RH, Perez S, Rinaudo M, Carbohydr. Res., 100, 117 (1982)
Sletmoen M, Stokke BT, Biopolymers, 89, 310 (2008)
Marchetti F, Bergamin M, Bosi S, Khan R, Murano E, Norbedo S, Carbohydr. Polym., 75, 670 (2009)
Crescenzi V, Gamini A, Rizzo R, Meille SV, Carbohydr. Polym., 9, 169 (1988)
Grassi M, Lapasin R, Coviello T, Matricardi P, Meo CD, Alhaique F, Carbohydr. Polym., 78, 377 (2009)
Rivenq R, Donche A, Noik C, SPE Reserv. Eng., 7, 15 (1992)
Survase SA, Saudagar PS, Bajaj IB, Singhal RS, Food Technol. Biotechnol.,, 45, 107 (2007)
Mishra S, Bera A, Mandal A, J. Petrol. Eng., Article ID 395857 (2014)
Mandal A, Int. J. Oil, Gas Coal Tech., 9, 241 (2015)
Cao Y, Li H, Eur. Polym. J., 38, 1457 (2002)
Babu K, Pal N, Saxena VK, Mandal A, Korean J. Chem. Eng., 33(2), 711 (2016)
Sodeifian G, Daroughegi R, Aalaie J, Korean J. Chem. Eng., 32(12), 2484 (2015)
Chai W, Zhang Y, Hou Y, Polym. Chem., 4, 1006 (2013)
Chichkanov SV, Proskurina VE, Myagchenkov VA, Chemistry and Computational Simulation. Butlerov Communications., 3, 33 (2002)
Pierce DS, Mechanics of Impression Evidence., CRC Press (2011).
Spivey AC, Arseniyadis S, Angew. Chem.-Int. Edit., 43, 5436 (2004)
Clayden J, Greeves N, Warren S, Organic Chemistry, Oxford University Press, 2nd Ed. (2007).
de Nooy AEJ, Rori V, Masci G, Dentini M, Vittorio Crescenzi Carbohydr. Res., 324, 116 (2000)
Feeney M, Casadei MA, Matricardi P, J. Mater. Sci. -Mater. Med., 20, 1081 (2009)
Roy A, Comesse S, Grisel M, Hucher N, Souguir Z, Renou F, Biomacromolecules, 15(4), 1160 (2014)
Colinet I, Picton L, Muller G, LeCerf D, Carbohydr. Polym., 69, 65 (2007)
Xu X, Wang X, Cai F, Zhang L, Carbohydr. Res., 345, 419 (2010)
Norisuye T, Yanaki T, Fujita H, J. Polym. Sci. B: Polym. Phys., 18, 547 (1980)
Durand A, Eur. Polym. J., 43, 1744 (2007)
Strobl G, The Physics of Polymers, Springer, Berlin (2007).
Aalaie J, Hemmati M, Sajjadian VA, J. Macromol. Sci.-Phys., 51, 2473 (2012)
Kulicke WM, Lettau AI, Thielking H, Carbohydr. Res., 297, 135 (1997)
Zatz JL, Knapp S, J. Pharm. Sci., 73, 468 (1984)
Alquraishi AA, Alsewailem FD, Carbohydr. Polym., 88, 859 (2012)
Lee BB, Ravindra P, Chan ES, Colloids Surf. A: Physicochem. Eng. Asp., 332, 112 (2009)
Docoslis A, Giese RF, van Oss CJ, Colloids Surf. B: Biointerfaces, 19, 147 (2000)
Nahringbauer I, J. Colloid Interface Sci., 176(2), 318 (1995)
Brunchi C, Bercea M, Morariu S, Dascalu M, J. Polym. Res., 23, 123 (2016)
Starkey PT, Davis HT, Tirrell MV, Argillier JF, Audibert A, Lecourtier J, in Associative Polymers in Aqueous Media, Glass JE (Ed.), ACS Symposium Series (2000).
Wyatt NB, Gunther CM, Liberatore MW, Polymer, 52(11), 2437 (2011)
Argillier JF, Audibert A, Lecourtier J, Moan M, Rousseau L, Colloids Surf. A: Physicochem. Eng. Asp., 113, 247 (1996)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로