ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 13, 2016
Accepted November 29, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of process parameters on the CaCO3 production in the single process for carbon capture and mineralization

1Green Energy Process Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34128, Korea 2University of Science and Technology Korea, 217 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea 3Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul 02841, Korea 4, Korea
jeongsk@kier.re.kr
Korean Journal of Chemical Engineering, March 2017, 34(3), 935-941(7), 10.1007/s11814-016-0340-y
downloadDownload PDF

Abstract

The regeneration of the CO2 capture system is the most energy-intensive process associated with CO2 capture because high temperatures are required to desorb CO2 from the absorbent. We propose a single process for effective CO2 capture and mineralization as a substitute for desorption of absorbed CO2, producing high value-added CaCO3. A saturated 2-amino-2-methyl-1-propanol (AMP) solution was used as a carbonate source, and calcium chloride (CaCl2) was used as a calcium ion source to precipitate CaCO3. A semi-batch reactor was used to investigate the effects of the mixing rate, temperature, and amount of calcium added during the CaCO3 precipitation process. During the mineralization reaction, the absorbed CO2 in AMP solution instantly converted into white CaCO3 precipitant with 97.4% conversion. The stirring rate provided a reciprocal effect on the crystal size, whereas the temperature and Ca/CO2 molar ratio appeared to affect the crystal morphology.

References

Lucquiaud M, Gibbins J, Chem. Eng. Res. Des., 89(9A), 1553 (2011)
Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609 (2011)
Lim JA, Kim DH, Yoon Y, Jeong SK, Park KT, Nam SC, Energy Fuels, 26(6), 3910 (2012)
Warudkar SS, Cox KR, Wong MS, Hirasaki GJ, Int. J. Greenh. Gas. Con., 16, 342 (2013)
Dang HY, Rochelle GT, Sep. Sci. Technol., 38(2), 337 (2003)
Bishnoi S, Rochelle GT, AIChE J., 48(12), 2788 (2002)
Bishnoi S, Rochelle GT, Ind. Eng. Chem. Res., 41(3), 604 (2002)
Sartori G, Ho WS, Savage DW, Chludzinski GR, Wiechert S, Sep. Purif. Methods, 16, 171 (1986)
Beer JM, Prog. Energy Combust. Sci., 26, 301 (2000)
Beer JM, Prog. Energy Combust. Sci., 33(2), 107 (2007)
Karimi M, Hillestad M, Svendsen HF, Energy Procedia, 4, 1601 (2011)
Van Wagener DH, Rochelle GT, Chem. Eng. Res. Des., 89(9A), 1639 (2011)
Le Moullec Y, Kanniche M, Int. J. Greenh. Gas Con., 5, 727 (2011)
Neveux T, Le Moullec Y, Corriou JP, Favre E, E. Chem. Eng. Trans., 35, 337 (2013)
Oyenekan BA, Rochelle GT, AIChE J., 53(12), 3144 (2007)
Leites IL, Sama DA, Lior N, Energy, 28(1), 55 (2003)
Idem R, Wilson M, Tontiwachwuthikul P, Chakma A, Veawab A, Aroonwilas A, Gelowitz D, Ind. Eng. Chem. Res., 45(8), 2414 (2006)
Domingo C, Loste E, Gomez-Morales J, Garcia-Carmona J, Fraile J, J. Supercrit. Fluids, 36(3), 202 (2006)
Sanna A, Dri M, Hall MR, Maroto-Valer M, Appl. Energy, 99, 545 (2012)
Bhanage BM, Arai M, Transformation and Utilization of Carbon Dioxide, Springer Berlin Heidelberg, Berlin (2014).
Popescu MA, Isopescu R, Matei C, Fagarasan G, Plesu V, Adv. Powder Technol., 25(2), 500 (2014)
Thriveni T, Um N, Nam SY, Ahn YJ, Han C, Ahn JW, Korean Chem. Soc., 51, 107 (2014)
Carmona JG, Morales JG, Clemente RR, J. Colloid Interface Sci., 261(2), 434 (2003)
Ukrainczyk M, Kontrec J, Babic-Ivancic V, Brecevic L, Kralj D, Powder Technol., 171(3), 192 (2007)
Feng B, Yong AK, An H, Mater. Sci. Eng., 445, 170 (2007)
Vucak M, Peric J, Pons MN, Chanel S, Powder Technol., 101(1), 1 (1999)
Prah J, Macek J, Drazic G, J. Cryst. Growth, 324(1), 229 (2011)
Vinoba M, Bhagiyalakshmi M, Grace AN, Chu DH, Nam SC, Yoon Y, Yoon SH, Jeong SK, Langmuir, 29(50), 15655 (2013)
Vinoba M, Bhagiyalakshmi M, Choi SY, Park KT, Kim HJ, Jeong SK, J. Phys. Chem., 118, 17556 (2014)
Schroeder BB, Harris DD, Smith ST, Lignell DO, Cryst. Growth Des., 14, 1756 (2014)
Torbacke M, Rasmuson AC, AIChE J., 50(12), 3107 (2004)
Beck R, Andreassen JP, AIChE J., 58(1), 107 (2012)
Kitamura M, Cryst. Eng. Comm., 11, 949 (2009)
Lopez-Periago AM, Pacciani R, Garcia-Gonzalez C, Vega LF, Domingo C, J. Supercrit. Fluids, 52(3), 298 (2010)
Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC, Bull. Korean Chem. Soc., 34, 783 (2013)
Shariff AM, Murshid G, Lau KK, Bustam MA, Ahmad F, World Acad Sci. Eng. Technol., 60, 1050 (2011)
Kitamura M, J. Cryst. Growth, 239, 2205 (2002)
Tai CY, Chen P, Shih S, AIChE J., 39, 1472 (1993)
Kawano J, Shimobayashi N, Kitamura M, Shinoda K, J. Cryst. Growth, 239, 419 (2002)
Schlomach J, Quarch K, Kind M, Chem. Eng. Technol., 29(2), 215 (2006)
Keith HD, Padden FJ, J. Appl. Phys., 34, 2409 (1963)
Ahn JW, Kim JH, Park HS, Kim JA, Han C, Kim H, Korean J. Chem. Eng., 22(6), 852 (2005)
Jung T, Kim W, Choi CK, Cryst. Res. Technol., 40, 586 (2005)
Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 276(3-4), 541 (2005)
Sohnel O, Mullin JW, J. Cryst. Growth, 60, 239 (1982)
Onimisi JA, Ismail R, Ariffin KS, Baharun N, Hussin HB, Korean J. Chem. Eng., 33(9), 2756 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로