Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 6, 2016
Accepted February 6, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of Cu promoter and alumina phases on Pt/Al2O3 for propane dehydrogenation
Department of Chemical Engineering, RCCT, Hankyong National University, Anseong 17579, Korea 1Hyosung R&D Labs., 74 Simin-daero, Dongan-gu, Anyang-si, Gyunggi-do 431-080, Korea 2Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, P. O. Box 131, Seoul 02792, Korea
hlkoh@hknu.ac.kr
Korean Journal of Chemical Engineering, May 2017, 34(5), 1337-1345(9), 10.1007/s11814-017-0020-6
Download PDF
Abstract
We investigated the effects of different Cu weight ratio on θ or γ-Al2O3 which were impregnated with platinum in terms of catalytic activity for propane dehydrogenation and physicochemical properties. 1.5 wt% Pt, 0-10 wt% Cu catalyst supported on θ-Al2O3 or γ-Al2O3 was prepared by incipient wetness co-impregnation. Enhanced Pt dispersion by increasing Cu contents in γ-Al2O3 supported catalyst was confirmed via XRD and XPS. Pt and CuO was separated in Pt-Cu/θ-Al2O3, but Pt-Cu alloy was identified after reduction treatment. Also, adding Cu in Pt/Al2O3 makes catalyst’s acidity lower and this property led to increased propylene yield in propane dehydrogenation. However, Pt3Cu was not good for yield of PDH, which was confirmed in Pt-10Cu/θ-Al2O3 through XRD.
Keywords
References
Kim GH, Jung KD, Kim WI, Um BH, Shin CH, Oh K, Koh HL, Res. Chem. Intermed., 42, 351 (2016)
Zangeneh FT, Mehrazma S, Sahebdelfar S, Fuel Process. Technol., 109, 118 (2013)
Sahebdelfar S, Ravanchi MT, Zangeneh FT, Mehrazma S, Rajabi S, Chem. Eng. Res. Des., 90(8), 1090 (2012)
Zangeneh FT, Sahebdelfar S, Bahmani M, Chin. J. Chem. Eng., 21(7), 730 (2013)
Sahebdelfar S, Zangeneh FT, Iran. J. Chem. Eng., 7, 51 (2010)
Komasi M, Fatemi S, Razavian M, Korean J. Chem. Eng., 32, 7 (2015)
Akporiaye D, Jensen SF, Olsbye U, Rohr F, Rytter E, Ronnekleiv M, Spjelkavik AI, Ind. Eng. Chem. Res., 40(22), 4741 (2001)
Vu BK, Song MB, Ahn IY, Suh YW, Suh DJ, Kim JS, Shin EW, J. Ind. Eng. Chem., 17(1), 71 (2011)
Han Z, Li S, Jiang F, Wang T, Ma X, Gong J, Nanoscale, 6, 10000 (2014)
Mehdi V, Ali H, Asian J. Chem., 22, 9 (2010)
Zangeneh FT, Sahebdelfar S, Iran. J. Chem. Eng., 8, 49 (2011)
Yokoyama C, Bharadwaj SS, Schmidt LD, Catal. Lett., 38(3-4), 181 (1996)
Abd Hamid SB, Lambert D, Derouane EG, Catal Today, 63, 237 (2000)
Rioux R, Vannice M, J. Catal., 233, 147 (2015)
Gao JJ, Zhou GP, Qiu HJ, Wang Y, Wang J, Corrosion Sci., 108, 194 (2016)
Tymoczko J, Calle-Vallejo F, Colic V, Schuhmann W, Bandarenka AS, Electrochim. Acta, 179, 469 (2015)
Ensafi AA, Abarghoui MM, Rezaei B, Electrochim. Acta, 190, 199 (2016)
Epron F, Gauthard F, Barbier J, Appl. Catal. A: Gen., 237(1-2), 253 (2002)
Veldurthi S, Shin CH, Joo OS, Jung KD, Catal. Today, 185(1), 88 (2012)
Mauldin CH, Baird WC, US Patent, 4,231,898 (1980).
Gholidoust A, Naderifar A, Rahmani M, Sahebdelfar S, Int. J. Mod. Phys.: Conference Series, World Scientific, 168 (2012).
Casiraghi C, Ferrari A, Robertson J, Phys. Rev. B, 72, 085401 (2005)
Shan YL, Sui ZJ, Zhu Y, Chen D, Zhou XG, Chem. Eng. J., 278, 240 (2015)
Nagaraja BM, Jung H, Yang DR, Jung KD, Catal. Today, 232, 40 (2014)
Vu BK, Song MB, Ahn IY, Suh YW, Suh DJ, Kim WI, Koh HL, Choi YG, Shin EW, Appl. Catal. A: Gen., 400(1-2), 25 (2011)
Zangeneh FT, Mehrazma S, Sahebdelfar S, Fuel Process. Technol., 109, 118 (2013)
Sahebdelfar S, Ravanchi MT, Zangeneh FT, Mehrazma S, Rajabi S, Chem. Eng. Res. Des., 90(8), 1090 (2012)
Zangeneh FT, Sahebdelfar S, Bahmani M, Chin. J. Chem. Eng., 21(7), 730 (2013)
Sahebdelfar S, Zangeneh FT, Iran. J. Chem. Eng., 7, 51 (2010)
Komasi M, Fatemi S, Razavian M, Korean J. Chem. Eng., 32, 7 (2015)
Akporiaye D, Jensen SF, Olsbye U, Rohr F, Rytter E, Ronnekleiv M, Spjelkavik AI, Ind. Eng. Chem. Res., 40(22), 4741 (2001)
Vu BK, Song MB, Ahn IY, Suh YW, Suh DJ, Kim JS, Shin EW, J. Ind. Eng. Chem., 17(1), 71 (2011)
Han Z, Li S, Jiang F, Wang T, Ma X, Gong J, Nanoscale, 6, 10000 (2014)
Mehdi V, Ali H, Asian J. Chem., 22, 9 (2010)
Zangeneh FT, Sahebdelfar S, Iran. J. Chem. Eng., 8, 49 (2011)
Yokoyama C, Bharadwaj SS, Schmidt LD, Catal. Lett., 38(3-4), 181 (1996)
Abd Hamid SB, Lambert D, Derouane EG, Catal Today, 63, 237 (2000)
Rioux R, Vannice M, J. Catal., 233, 147 (2015)
Gao JJ, Zhou GP, Qiu HJ, Wang Y, Wang J, Corrosion Sci., 108, 194 (2016)
Tymoczko J, Calle-Vallejo F, Colic V, Schuhmann W, Bandarenka AS, Electrochim. Acta, 179, 469 (2015)
Ensafi AA, Abarghoui MM, Rezaei B, Electrochim. Acta, 190, 199 (2016)
Epron F, Gauthard F, Barbier J, Appl. Catal. A: Gen., 237(1-2), 253 (2002)
Veldurthi S, Shin CH, Joo OS, Jung KD, Catal. Today, 185(1), 88 (2012)
Mauldin CH, Baird WC, US Patent, 4,231,898 (1980).
Gholidoust A, Naderifar A, Rahmani M, Sahebdelfar S, Int. J. Mod. Phys.: Conference Series, World Scientific, 168 (2012).
Casiraghi C, Ferrari A, Robertson J, Phys. Rev. B, 72, 085401 (2005)
Shan YL, Sui ZJ, Zhu Y, Chen D, Zhou XG, Chem. Eng. J., 278, 240 (2015)
Nagaraja BM, Jung H, Yang DR, Jung KD, Catal. Today, 232, 40 (2014)
Vu BK, Song MB, Ahn IY, Suh YW, Suh DJ, Kim WI, Koh HL, Choi YG, Shin EW, Appl. Catal. A: Gen., 400(1-2), 25 (2011)