ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 16, 2016
Accepted February 6, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Quantitative structure-property relationship (QSPR) for prediction of CO2 Henry’s law constant in some physical solvents with consideration of temperature effects

Institute of Petroleum Engineering, Faculty of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
riahi@ut.ac.ir
Korean Journal of Chemical Engineering, May 2017, 34(5), 1405-1415(11), 10.1007/s11814-017-0018-0
downloadDownload PDF

Abstract

Different types of physical solvents have been utilized for CO2 removal from natural gas in the sweetening process. In this work, quantitative structure-property relationship (QSPR) method is suggested to build powerful models to predict Henry’s law constant (HLC) for CO2 in physical solvents. Modeling the HLC for CO2 as a function of molecular descriptors was achieved by multiple linear regression and descriptor selection was by genetic algorithm. The main proposed model has two simple descriptors, including the number of hydroxyl groups and molecular weight of solvents at fixed temperature. Also, the effect of temperature was studied, and this operational variable was added to the mentioned simple descriptors. In this case, the data set is comprised of 77 HLC for CO2 in solvents and at different temperatures. Several internal and external validation methods demonstrated the excellent ability for prediction, and the average relative deviation of main model was 6.48.

References

Comite A, Costa A, Felice RD, Pagliai P, Vitiello D, Korean J. Chem. Eng., 32, 2 (2015)
Davea A, Dave M, Huanga Y, Rezvani S, Hewitt N, Int. J. Greenh Gas Con., 49, 436 (2016)
Gui X, Tang ZG, Fei WY, J. Chem. Eng. Data, 55(9), 3736 (2010)
DeVoe H, Thermodynamics and chemistry, 2nd Ed., Prentice-Hall (2014).
Gui X, Tang ZG, Fei WY, J. Chem. Eng. Data, 56(5), 2420 (2011)
Henni A, Tontiwachwuthikul P, Chakma A, Can. J. Chem. Eng., 83(2), 358 (2005)
Gwinner B, Roizard D, Lapicque F, Favre E, Cadours R, Boucot P, Carrette PL, Ind. Eng. Chem. Res., 45(14), 5044 (2006)
Jou FY, Otto FD, Mather AE, Fluid Phase Equilib., 175(1-2), 53 (2000)
Jou FY, Mather AE, Schmidt KAG, J. Chem. Eng. Data, 60(12), 3738 (2015)
Bohloul MR, Vatani A, Peyghambarzadeh SM, Fluid Phase Equilib., 365, 106 (2014)
Gui X, Tang Z, Fei W, LCE, 2, 26 (2011)
Miller MB, Chen DL, Luebke DR, Johnson JK, Enick RM, J. Chem. Eng. Data, 56(4), 1565 (2011)
Baj S, Krawczyk T, Darowska A, Siewniak A, Sobolewski A, Korean J. Chem. Eng., 32, 11 (2015)
Brockbank SA, Giles NF, Rowley RL, Wilding WV, J. Chem. Eng. Data, 59(4), 1052 (2014)
Majer V, Sedlbauer J, Bergin G, Fluid Phase Equilib., 272(1-2), 65 (2008)
Duchowicz PR, Garro JCM, Castro EA, Chemometrics Intell. Lab. Syst., 91, 133 (2008)
Golmohammadi H, Dashtbozorgi Z, Acree WE, Struct. Chem., 24, 1799 (2013)
Kim J, Jung DH, Rhee H, Choi SH, Sung MJ, Choi WS, Korean J. Chem. Eng., 25(4), 873 (2008)
Shacham M, Elly M, Paster I, Brauner N, Chem. Eng. Sci., 97, 186 (2013)
O’Loughlin DR, English NJ, Chemosphere, 127, 1 (2015)
Gharagheizi F, Ilani-Kashkouli P, Mirkhani SA, Farahani N, Mohammadi AH, Ind. Eng. Chem. Res., 51(12), 4764 (2012)
English NJ, Carroll DG, J. Chem. Inf. Comput. Data, 41, 1150 (2001)
Xu J, Zhang H, Wang LX, Ye WX, Xu WL, Li ZC, Fluid Phase Equilib., 291(2), 111 (2010)
Sahoo S, Patel S, Mishra BK, Thermochim. Acta, 512(1-2), 273 (2011)
Goodarzi M, Ortiz EV, Coelho LS, Duchowicz PR, Atmos. Environ., 44, 3179 (2010)
Golzar K, Amjad-Iranagh S, Modarress H, Measurement, 46, 4206 (2013)
Shiffman D, The nature of code: Simulating Natural Systems with Processing, The nature of code, first Ed., U.S.A. (2012).
Rajasekaran S, Vijayalakshmi Pai GA, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis and Applications (Computer), PHI Learning (2011).
http://www.hyper.com
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb, MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AP, Bloino J, Zheng G, Gaussian 98." Gaussian Inc., Pittsburgh PA, Gaussian Inc., Pittsburgh PA (1998).
Talete SRL, Dragon for Windows (Software for Molecular Descriptor Calculation), Version 6 (2013).
Sivanandam SN, Deepa SN, Introduction to Genetic Algorithms, Springer Science & Business Media (2007).
IJolliffe IT, Principal Component Analysis, Springer, New York (2002).
Golbraikh A, Tropsha A, J. Mol. Graph. Model, 20, 269 (2002)
XLSTAT software, XLSTAT-CCR module, Trial Version (2013).
Gramatica P, QSAR Comb. Sci., 26, 694 (2007)
Minovski N, Zuperl S, Drgan V, Novi M, Anal. Chim. Acta, 759, 28 (2013)
Galvao AC, Francesconi AZ, J. Supercrit. Fluids, 51(2), 123 (2009)
Xu Y, Schutte RP, Hepler LG, Can. J. Chem. Eng., 70, 569 (1992)
Rucker CH, Rucker G, Meringer M, J. Chem. Inf. Model, 47, 2345 (2007)
Singh P, Niederer JPM, Versteeg GF, Int. J. Greenh Gas Control, 1, 5 (2007)
Singh P, Niederer JPM, Versteeg GF, Chem. Eng. Res. Des., 87(2A), 135 (2009)
Kanegsberg B, Kanegsberg E, Handbook for Critical Cleaning: Cleaning Agents and Systems, 2nd Ed., CRC Press (2011).
Osmialowski K, Piekos R, J. Solution. Chem., 20, 241 (1991)
Makitra RG, Pristanski RE, Flyunt RI, Russ. J. Gen. Chem., 73, 1227 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로