ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 13, 2016
Accepted February 14, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Fabrication of NOA microfluidic devices based on sequential replica molding

Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
bong98@korea.ac.kr
Korean Journal of Chemical Engineering, May 2017, 34(5), 1495-1499(5), 10.1007/s11814-017-0041-1
downloadDownload PDF

Abstract

Polydimethylsiloxane (PDMS) microfluidic devices, though they are commonly utilized in microfluidic applications, have several limitations, such as short-term modified surface condition, swelling in the presence of organic solvents, and deformation under high pressure or when built with low aspect ratios. To resolve the restrictions, Norland Optical Adhesive (NOA) has been introduced as an excellent alternative for PDMS. Here, we present a practical protocol for the fabrication of NOA microfluidic devices via a step-wise molding process. Through the indirect molding of NOA on wafers, the damage to the wafers can be significantly reduced. Furthermore, because we use positivepatterned wafers, which are commonly used to fabricate PDMS devices, no additional fabrication of the wafer is required. This simple strategy thus avoids damage to the wafers and simultaneously allows for the mass production of NOA devices without deformation. We also test the performance of NOA devices in oil-in-water droplet production and in a microfluidic process using organic solvents.

References

McDonald JC, Whitesides GM, Acc. Chem. Res., 35, 491 (2002)
Psaltis D, Quake SR, Yang C, Nature, 442, 381 (2006)
Hu Y, Mackenzie JD, J. Mater. Sci., 27, 4415 (1992)
Nam SW, Van Noort D, Yang Y, Park S, Lab Chip, 7, 638 (2007)
Lee NY, Yang YS, Kim YS, Park SS, Bull. Korean Chem. Soc., 27, 479 (2006)
Gawron AJ, Martin RS, Lunte SM, Electrophoresis, 22(2), 242 (2001)
Lee D, Ahn KH, Korea-Aust. Rheol. J., 27(2), 65 (2015)
Hong JS, Korea-Aust. Rheol. J., 28(2), 77 (2016)
Dziubinski M, Korea-Aust. Rheol. J., 27(1), 11 (2015)
Choi JW, Oh KW, Thomas JH, Heineman WR, Halsall HB, Nevin JH, Ahn CH, Lab Chip, 2, 27 (2002)
Rossier J, Reymond F, Michel PE, Electrophoresis, 23(6), 858 (2002)
Malic L, Brassard D, Veres T, Tabrizian M, Lab Chip, 10, 418 (2010)
Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang YD, Borenstein JT, Langer R, Adv. Mater., 18(2), 165 (2006)
Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD, Nat. Mater., 6(11), 908 (2007)
Andersson H, Van Den Berg A, Lab Chip, 4, 98 (2004)
Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH, Nature, 442, 412 (2006)
Seo M, Gorelikov I, Williams R, Matsuura N, Langmuir, 26(17), 13855 (2010)
Kim HU, Choi DG, Roh YH, Shim MS, Bong KW, Small, 12, 3463 (2016)
Roh YH, Sim SJ, Cho IJ, Choi J, Choi N, Bong KW, Analyst, 141, 4578 (2016)
Blanco FJ, Agirregabiria M, Berganzo J, Mayora K, Elizalde J, Calle A, Lechuga LM, J. Micromech. Microeng., 16, 1006 (2006)
Hong KS, Wang J, Sharonov A, Chandra D, Aizenberg J, Yang S, J. Micromech. Micoreng., 16, 1660 (2006)
Lee JL, Park C, Whitesides GM, Anal. Chem., 75, 6544 (2003)
Morra M, Occhiello E, Marola E, Garbassi F, Humphrey P, Johnson D, J. Colloid Interface Sci., 137, 11 (1990)
Fritz JL, Owen MJ, J. Adhes., 54, 33 (1995)
Gervais T, El-Ali J, Gunther A, Jensen KF, Lab Chip, 6, 500 (2006)
Hardy BS, Uechi K, Zhen J, Kavehpour HP, Lab Chip, 9, 935 (2009)
Delamarche E, Schmid H, Michel B, Biebuyck H, Adv. Mater., 9(9), 741 (1997)
Carlborg CF, Haraldsson T, Oberg K, Malkoch M, van der Wijngaart W, Lab Chip, 11, 3136 (2011)
Hung LH, Lin R, Lee AP, Lab Chip, 8, 983 (2008)
Ogonzyk D, Wegrzyn J, Jankowski P, dabrowski B, Garstecki P, Lab Chip, 10, 1324
Chen J, Wabuyele M, Chen H, Patterson D, Hupert M, Shadpour H, Soper SA, Anal. Chem., 77, 658 (2005)
Ren K, Dai W, Zhou J, Su J, Wu H, Proc. Natl. Acad. Sci., 108, 8162 (2011)
Kim P, Jeong HE, Khademhosseini A, Suh KY, Lab Chip, 6, 1432 (2006)
Barrett R, Faucon M, Lopez J, Cristobal G, Destremaut F, Dodge A, Salmon JB, Lab Chip, 6, 494 (2006)
Min KI, Lee TH, Park CP, Wu ZY, Girault HH, Ryu I, Kim DP, Angew. Chem.-Int. Edit., 49, 7063 (2010)
Park MC, Hur JY, Kwon KW, Park SH, Suh KY, Lab Chip, 6, 988 (2006)
Jeong HE, Suh KY, Lab Chip, 8, 1787 (2008)
Cygan ZT, Cabral JT, Beers KL, Amis EJ, Langmuir, 21(8), 3629 (2005)
Wagli P, Homsy A, de Rooij NF, Sens. Actuators B-Chem., 156, 994 (2011)
Sollier E, Murray C, Maoddi P, Di Carlo D, Lab Chip, 11, 3752 (2011)
Bong KW, Xu J, Kim JH, Chapin SC, Strano MS, Gleason KK, Doyle PS, Nat. Commun., 3, 805 (2012)
Bartolo D, Degre G, Nghe P, Studer V, Lab Chip, 8, 274 (2008)
Khanafer K, Duprey A, Schlicht M, Berguer R, Biomed. Microdevices, 11, 503 (2009)
Lim EJ, Ober TJ, Edd JF, Desai SP, Neal D, Bong KW, Doyle PS, Nat. Commun., 5, 4120 (2014)
Bhushan B, Hansford D, Lee KK, J. Vac. Sci. Technol. A, 24(4), 1197 (2006)
Mark JE, Ning YP, Polym. Eng. Sci., 25, 824 (1985)
Toepke, Michael W. Beebe DJ, Lab Chip, 6, 1484 (2006)
Zhang H, Cloud A, In Proceedings of 2006 SAMPE Fall Technical Conference (2006).
Pan J, Chen H, Zhang D, Zhang X, Yuan L, Aobo L, J. Micromech. Microeng., 23, 9 (2013)
Dreyfus R, Tabeling P, Willaime H, Phys. Rev. Lett., 90, 144505 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로