Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 26, 2017
Accepted February 14, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Highly stable inverted organic photovoltaic cells with a V2O5 hole transport layer
School of Chemical Engineering, Chonnam National University, 300 Youngbong-dong, Gwangju 61186, Korea 1Center for Vacuum, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Daejeon 34113, Korea
kdhh@chonnam.ac.kr
Korean Journal of Chemical Engineering, May 2017, 34(5), 1504-1508(5), 10.1007/s11814-017-0043-z
Download PDF
Abstract
The stability of the hole transport layer (HTL) in inverted organic photovoltaic cells is of great interest because the conventional HTL material, PEDOT:PSS, shows limited stability. In this work, solution processed vanadium pentoxide (V2O5) was adopted as the HTL, and the effect of annealing on the properties of the HTL was investigated. The inverted organic photovoltaic cell fabricated with V2O5 and annealed for 5min at 165 °C showed the highest power conversion efficiency (PCE) of 3.92%, which is an enhancement of 16% relative to the cell with PEDOT: PSS (PCE=3.36%). The cell with V2O5 was also found to be more stable than the PEDOT: PSS cell, in which a 51% decrease in PCE was observed after 96 h. In contrast, over the same interval, the V2O5 device maintained a PCE 85% of the original value.
References
Chu VB, Park SJ, Park GS, Jeon HS, Hwang YJ, Min BK, Korean J. Chem. Eng., 33(3), 880 (2016)
Pham VHT, Truong NTN, Trinh TK, Lee SH, Park C, Korean J. Chem. Eng., 33(2), 678 (2016)
Cho HH, Cho CH, Kang H, Yu H, Oh JH, Kim BJ, Korean J. Chem. Eng., 32(2), 261 (2015)
Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ, Proc. Nat. Ac. Sci., 105, 2783 (2008)
Kim H, Nam S, Jeong J, Lee S, Seo J, Han H, Kim Y, Korean J. Chem. Eng., 31(7), 1095 (2014)
You H, Dai Y, Zhang Z, Ma D, Appl. Phys., 101, 026105 (2007)
Li G, Chu CW, Shrotriya V, Huang J, Yang Y, Appl. Phys. Lett., 88, 253503 (2006)
Tao C, Ruan S, Zhang X, Xie G, Shen L, Kong X, Dong W, Liu C, Chen W, Appl. Phys. Lett., 93, 193307 (2008)
Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL, Appl. Phys. Lett., 93, 221107 (2008)
Zhao DW, Liu P, Sun XW, Tan ST, Ke L, Kyaw AKK, Appl. Phys. Lett., 92, 173303 (2008)
Liao HH, Chen LM, Xu Z, Li G, Yang Y, Appl. Phys. Lett., 92, 173303 (2008)
Takanezawa K, Tajima K, Hashimoto K, Appl. Phys. Lett., 93, 063308 (2008)
Yu BY, Tsai A, Tsai SP, Wong KT, Yang Y, Chu1 CW, Shyue JJ, Nanotechnology, 19, 255202 (2008)
Zilberberg K, Trost S, Meyer J, Kahn A, Behrendt A, Lutzenkirchen-Hecht D, Frahm R, Riedl T, Adv. Funct. Mater., 21(24), 4776 (2011)
Kim Y, Ballantyne AM, Nelson J, Bradley DDC, Organic Electronics, 10, 205 (2009)
Huang JS, Chou CY, Liu MY, Tsai KH, Lin WH, Lin CF, Organic Electronics, 10, 1060 (2009)
Zafar M, Yun JY, Kim DH, Appl. Surf. Sci., 398, 9 (2017)
Cho HS, Shin N, Kim K, Kim B, Kim DH, Synth. Met., 207, 31 (2015)
Zilberberg K, Trost S, Schmidt H, Riedl T, Adv. Eng. Mater., 1, 377 (2011)
Escobar GT, Pampel T, Caicedo JM, Cantu ML, Energy Environ. Sci., 6, 3088 (2013)
Cho SP, Yeo JS, Kim DY, Na SI, Kim SS, Sol. Energy Mater. Sol. Cells, 132, 196 (2015)
Pan J, Li P, Cai L, Hu Y, Zhang YJ, Sol. Energy Mater. Sol. Cells, 144, 616 (2016)
Arbab EAA, Mola GT, Appl. Phys. A-Mater. Sci. Process., 122, 405 (2016)
Pham VHT, Truong NTN, Trinh TK, Lee SH, Park C, Korean J. Chem. Eng., 33(2), 678 (2016)
Cho HH, Cho CH, Kang H, Yu H, Oh JH, Kim BJ, Korean J. Chem. Eng., 32(2), 261 (2015)
Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ, Proc. Nat. Ac. Sci., 105, 2783 (2008)
Kim H, Nam S, Jeong J, Lee S, Seo J, Han H, Kim Y, Korean J. Chem. Eng., 31(7), 1095 (2014)
You H, Dai Y, Zhang Z, Ma D, Appl. Phys., 101, 026105 (2007)
Li G, Chu CW, Shrotriya V, Huang J, Yang Y, Appl. Phys. Lett., 88, 253503 (2006)
Tao C, Ruan S, Zhang X, Xie G, Shen L, Kong X, Dong W, Liu C, Chen W, Appl. Phys. Lett., 93, 193307 (2008)
Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL, Appl. Phys. Lett., 93, 221107 (2008)
Zhao DW, Liu P, Sun XW, Tan ST, Ke L, Kyaw AKK, Appl. Phys. Lett., 92, 173303 (2008)
Liao HH, Chen LM, Xu Z, Li G, Yang Y, Appl. Phys. Lett., 92, 173303 (2008)
Takanezawa K, Tajima K, Hashimoto K, Appl. Phys. Lett., 93, 063308 (2008)
Yu BY, Tsai A, Tsai SP, Wong KT, Yang Y, Chu1 CW, Shyue JJ, Nanotechnology, 19, 255202 (2008)
Zilberberg K, Trost S, Meyer J, Kahn A, Behrendt A, Lutzenkirchen-Hecht D, Frahm R, Riedl T, Adv. Funct. Mater., 21(24), 4776 (2011)
Kim Y, Ballantyne AM, Nelson J, Bradley DDC, Organic Electronics, 10, 205 (2009)
Huang JS, Chou CY, Liu MY, Tsai KH, Lin WH, Lin CF, Organic Electronics, 10, 1060 (2009)
Zafar M, Yun JY, Kim DH, Appl. Surf. Sci., 398, 9 (2017)
Cho HS, Shin N, Kim K, Kim B, Kim DH, Synth. Met., 207, 31 (2015)
Zilberberg K, Trost S, Schmidt H, Riedl T, Adv. Eng. Mater., 1, 377 (2011)
Escobar GT, Pampel T, Caicedo JM, Cantu ML, Energy Environ. Sci., 6, 3088 (2013)
Cho SP, Yeo JS, Kim DY, Na SI, Kim SS, Sol. Energy Mater. Sol. Cells, 132, 196 (2015)
Pan J, Li P, Cai L, Hu Y, Zhang YJ, Sol. Energy Mater. Sol. Cells, 144, 616 (2016)
Arbab EAA, Mola GT, Appl. Phys. A-Mater. Sci. Process., 122, 405 (2016)