Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 13, 2016
Accepted March 22, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Esterification of acrylic acid with ethanol using pervaporation membrane reactor
Department of Chemical Engineering, National Institute of Technology Raipur (CG), India
dr.amitkeshav@gmail.com
Korean Journal of Chemical Engineering, June 2017, 34(6), 1661-1668(8), 10.1007/s11814-017-0088-z
Download PDF
Abstract
Esterification of acrylic acid with ethanol was carried out using an in-situ reactor with an integrated pervaporation assembly (IPAE) made of polyvinyl alcohol (PVA) membrane and was compared with a non-integrated (NIE) system. Effect of reaction temperature (Tr), catalyst loading (Cc), molar ratios of reactants (MR) and ratio of effective membrane area to unit volume of reaction mixture (S/Vo) on kinetics of esterification reaction were studied. Conversions achieved in IPAE were found to be distinctly higher than the NIE. The highest conversion of acrylic acid was obtained as 83.3% at Tr=60 °C, MR=3 : 1, Cc=2% and S/Vo=14.1m-1. Equilibrium conversion of acrylic acid in NIE was obtained as 55.1% at 60 °C, 1 : 1 in 7 h, while using IPAE conversion enhances to 67.6%. Esterification of acrylic acid and ethanol with presently studied operating parameters provides a new approach to existing literature reported esterification-pervaporation system.
References
Han Y, Lv EM, Ma LL, Lu J, Chen KX, Ding JC, Energy Conv. Manag., 106, 1379 (2015)
Truong HT, Rode S, Roizard D, Mouzon-Pelletier S, Tretjak S, Sep. Purif. Technol., 120, 24 (2013)
Zhu MH, Kumakiri I, Tanaka K, Kita H, Microporous Mesoporous Mater., 181, 47 (2013)
Park BG, Korean J. Chem. Eng., 21(4), 882 (2004)
Song KM, Hong YK, Yu J, Hong WH, Korean J. Chem. Eng., 19(2), 290 (2002)
Malshe VC, Chandalia SB, Chem. Eng. Sci., 32, 1530 (1977)
Sert E, Atalay FS, Chem. Eng. Process., 81, 41 (2014)
Sanz MT, Gmehling J, Chem. Eng. J., 123(1-2), 9 (2006)
Korkmaz S, Salt Y, Hasanoglu A, Ozkan S, Salt I, Dincer S, Appl. Catal. A: Gen., 366(1), 102 (2009)
Hasanoglu A, Salt Y, Keleser S, Dincer S, Desalination, 245(1-3), 662 (2009)
Delgado P, Sanz MT, Beltran S, Nunez LA, Chem. Eng. J., 165(2), 693 (2010)
Teerachaiyapat T, Ramakul P, Korean J. Chem. Eng., 33(1), 8 (2016)
Rathod AP, Wasewar KL, Sonawane SS, Procedia Eng., 51, 456 (2013)
Kita H, Horii K, Ohtoshi Y, Tanaka K, Okamoto KI, J. Mater. Sci. Lett., 14(3), 206 (1995)
Rathod AP, Wasewar KL, Sonawane SS, Procedia Eng., 51, 330 (2013)
Ma J, Zhang MH, Lu LY, Yin X, Chen J, Jiang ZY, Chem. Eng. J., 155(3), 800 (2009)
Zhu MH, Feng ZJ, Hua XM, Hu H, Xia SL, Hu N, Yang Z, Kumakiri I, Chen XS, Kita H, Microporous Mesoporous Mater., 233, 171 (2016)
Zhang W, Na S, Li W, Xing W, Ind. Eng. Chem. Res., 54, 18 (2015)
Altiokka MR, Citak A, Appl. Catal. A: Gen., 239(1-2), 141 (2003)
Wasewar K, Patidar S, Agarwal VK, Desalination, 243(1-3), 305 (2009)
Ameri E, Moheb A, Roodpeyma S, Chem. Eng. J., 162(1), 355 (2010)
Jyoti G, Keshav A, Anandkumar J, Int. J. Chem. React. Eng., 14, 571 (2016)
Ali SH, Tarakmah A, Merchant SQ, Al-Sahhaf T, Chem. Eng. Sci., 62(12), 3197 (2007)
Bart HJ, Reidetschlager J, Schatka K, Lehmann A, Ind. Eng. Chem. Res., 33(1), 21 (1994)
Yun ZOU, Zhangfa T, Kun LIU, Xianshe F, Chin. J. Catal., 31, 999 (2010)
Domingues L, Recasens F, Larrayoz MA, Chem. Eng. Sci., 54(10), 1461 (1999)
Liu QL, Zhang ZB, Chen HF, J. Membr. Sci., 182(1-2), 173 (2001)
Krupiczka R, Koszorz Z, Sep. Purif. Technol., 16(1), 55 (1999)
Truong HT, Rode S, Roizard D, Mouzon-Pelletier S, Tretjak S, Sep. Purif. Technol., 120, 24 (2013)
Zhu MH, Kumakiri I, Tanaka K, Kita H, Microporous Mesoporous Mater., 181, 47 (2013)
Park BG, Korean J. Chem. Eng., 21(4), 882 (2004)
Song KM, Hong YK, Yu J, Hong WH, Korean J. Chem. Eng., 19(2), 290 (2002)
Malshe VC, Chandalia SB, Chem. Eng. Sci., 32, 1530 (1977)
Sert E, Atalay FS, Chem. Eng. Process., 81, 41 (2014)
Sanz MT, Gmehling J, Chem. Eng. J., 123(1-2), 9 (2006)
Korkmaz S, Salt Y, Hasanoglu A, Ozkan S, Salt I, Dincer S, Appl. Catal. A: Gen., 366(1), 102 (2009)
Hasanoglu A, Salt Y, Keleser S, Dincer S, Desalination, 245(1-3), 662 (2009)
Delgado P, Sanz MT, Beltran S, Nunez LA, Chem. Eng. J., 165(2), 693 (2010)
Teerachaiyapat T, Ramakul P, Korean J. Chem. Eng., 33(1), 8 (2016)
Rathod AP, Wasewar KL, Sonawane SS, Procedia Eng., 51, 456 (2013)
Kita H, Horii K, Ohtoshi Y, Tanaka K, Okamoto KI, J. Mater. Sci. Lett., 14(3), 206 (1995)
Rathod AP, Wasewar KL, Sonawane SS, Procedia Eng., 51, 330 (2013)
Ma J, Zhang MH, Lu LY, Yin X, Chen J, Jiang ZY, Chem. Eng. J., 155(3), 800 (2009)
Zhu MH, Feng ZJ, Hua XM, Hu H, Xia SL, Hu N, Yang Z, Kumakiri I, Chen XS, Kita H, Microporous Mesoporous Mater., 233, 171 (2016)
Zhang W, Na S, Li W, Xing W, Ind. Eng. Chem. Res., 54, 18 (2015)
Altiokka MR, Citak A, Appl. Catal. A: Gen., 239(1-2), 141 (2003)
Wasewar K, Patidar S, Agarwal VK, Desalination, 243(1-3), 305 (2009)
Ameri E, Moheb A, Roodpeyma S, Chem. Eng. J., 162(1), 355 (2010)
Jyoti G, Keshav A, Anandkumar J, Int. J. Chem. React. Eng., 14, 571 (2016)
Ali SH, Tarakmah A, Merchant SQ, Al-Sahhaf T, Chem. Eng. Sci., 62(12), 3197 (2007)
Bart HJ, Reidetschlager J, Schatka K, Lehmann A, Ind. Eng. Chem. Res., 33(1), 21 (1994)
Yun ZOU, Zhangfa T, Kun LIU, Xianshe F, Chin. J. Catal., 31, 999 (2010)
Domingues L, Recasens F, Larrayoz MA, Chem. Eng. Sci., 54(10), 1461 (1999)
Liu QL, Zhang ZB, Chen HF, J. Membr. Sci., 182(1-2), 173 (2001)
Krupiczka R, Koszorz Z, Sep. Purif. Technol., 16(1), 55 (1999)