ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 13, 2016
Accepted March 13, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Determination of thermal decomposition kinetics of low grade coal employing thermogravimetric analysis

Clean Energy Conversion Process Laboratory (CECP), Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea
Korean Journal of Chemical Engineering, June 2017, 34(6), 1678-1692(15), 10.1007/s11814-017-0070-9
downloadDownload PDF

Abstract

The decomposition kinetics of low grade coals was studied and compared with the kinetics of higher grade coals using thermogravimetric analysis. The effect of atmospheres (air, O2 and N2) on coal decomposition kinetics was also investigated. Experiments were carried out under non-isothermal conditions from room temperature to 950 °C at a heating rate of 10 °C/min. Three kinetic models--multiple linear regression equation, unreacted shrinking core and continuous reaction--were used to determine the kinetic parameters of coal decomposition. From the kinetic parameters determined through the multiple linear regression equation, coal type and the atmosphere had an effect on coal decomposition kinetics. Also, there was some variation in the kinetic parameters of coal decomposition determined by the chosen kinetic models. However, the model employing multiple linear regressions yielded consistent results with respect to theoretical background. Under air, the order of the secondary decomposition of coal samples was found to be 0.88, 1.33, 1.69 and 1.52 for samples A, B, C and D, respectively. The order of the secondary decomposition of coal samples when operated under O2 was 1.09, 1.45, 2.36 and 1.81 for samples A, B, C and D, respectively. Under N2, the order of the secondary decomposition of coal samples was 0.72, 0.79, 1.15 and 1.02 for samples A, B, C and D, respectively.

References

Sutcu H, J. Chin. Inst. Chem. Eng., 38(3-4), 245 (2007)
Kern S, Pfeifer C, Hofbauer H, Energy Technol., 1, 253 (2013)
Hook M, Aleklett K, Int. J. Energy Res., 34(10), 848 (2010)
Zhou X, Li W, Mabon R, Broadbelt LJ, Energy Technol., 4, 1 (2016)
Da Silva Filho CG, Milioli FE, Quimica Nova, 31, 98 (2008)
Anthony DB, Howard JB, AIChE J., 22, 625 (1976)
Hong B, Wang X, Zhou Z, Yu G, Energy Technol., 1, 449 (2013)
Wang Q, Wang G, Li W, Chen B, Energy Technol., 4, 751 (2016)
Wang Q, Zhang R, Luo Z, Fang M, Cen K, Energy Technol., 4, 543 (2016)
Zhang R, Wang Q, Luo Z, Fang M, Cen K, Energy Technol., 3, 1059 (2015)
Davini P, Ghetti P, Bonfanti L, de Michele G, Fuel, 75, 1083 (1996)
Chen Y, Mori S, Pan WP, Thermochim. Acta, 275(1), 149 (1996)
Crelling JC, Hippo EJ, Woerner BA, West DP, Fuel, 71, 151 (1992)
Levenspiel O, Chemical Reaction Engineering, Third Edit, John Wiley & Sons, New York, United States (1999).
Morgan PA, Robertson D, Unsworth JF, Fuel, 65, 1546 (1986)
Vuthaluru HB, Bioresour. Technol., 92(2), 187 (2004)
Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F, Bioresour. Technol., 101(14), 5601 (2010)
Ozawa T, Bulletin of the Chem. Soc. Japan, 38, 1881 (1965)
Heireche L, Belhadji M, Chalcogenide Lett., 4, 23 (2007)
Otero M, Calvo LF, Gil MV, Garcia AI, Moran A, Bioresour. Technol., 99(14), 6311 (2008)
Biswas S, Choudhury N, Sarkar P, Mukherjee A, Sahu SG, Boral P, Choudhury A, Fuel Process. Technol., 87(3), 191 (2006)
Yuzbasi NS, Selcuk N, Fuel Process. Technol., 92(5), 1101 (2011)
Nunes KGP, Marcilio NR, Brazilian J. Chem. Eng, 32, 211 (2015)
Sheeba KN, Babu JSC, Jaisankar S, Energy Sources Part A-Recovery Util. Environ. Eff., 32(19), 1837 (2010)
Mansaray KG, Ghaly AE, Energy Sources, 21(10), 899 (1999)
Kumar A, Wang LJ, Dzenis YA, Jones DD, Hanna MA, Biomass Bioenerg., 32(5), 460 (2008)
Park DK, Kim SD, Lee SH, Lee JG, Bioresour. Technol., 101(15), 6151 (2010)
Costa VJ, Krioukov VG, Maliska CR, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36, 661 (2014)
Cheremisinoff NP, Cheremisinoff PN, Particle Properties and Characterization, Gulf Publishing Company, Houston, Texas (1985).
Tolvanen H, Kokko L, Raiko R, The Factors Controlling Combustion and Gasification Kinetics of Solid Fuels, Pitea, Sweden (2011).
Channiwala SA, Parikh PP, Fuel, 81(8), 1051 (2002)
Basu P, Biomass Gasification and Pyrolysis Practical Design and Theory, Academic Press, Burlington (2010).
Zhu Q, Coal Sampling and Analysis Standards, London, United Kingdom (2010).
Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ, Bioresour. Technol., 101(12), 4584 (2010)
Kneller WA, Thermochim. Acta, 108, 357 (1986)
Lin YS, Ma XQ, Ning XX, Yu ZS, Energy Conv. Manag., 89, 727 (2015)
Mansaray KG, Ghaly AE, Energy Sources, 21(5), 453 (1999)
Goldfarb IJ, McGughan R, Meeks AC, Kinetic Analysis of Thermogravimetry. Part II. Programmed Temperature, Ohio (1969).
Mansaray KG, Ghaly AE, Biomass Bioenerg., 17(1), 19 (1999)
Yagi S, Kunii D, Chem. Eng. Sci., 16, 364 (1961)
Yagi S, Kunii D, Chem. Eng. Sci., 16, 372 (1961)
Yagi S, Kunii D, Chem. Eng. Sci., 16, 380 (1961)
Barranco R, Rojas A, Barraza J, Lester E, Fuel, 88(12), 2335 (2009)
Bledzki AK, Mamun AA, Volk J, Compos. Pt. A-Appl. Sci. Manuf., 41, 480 (2010)
Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C, Maejo International Journal of Science and Technology, 6, 186 (2012)
Mansaray KG, Ghaly AE, Energy Sources, 19(9), 989 (1997)
Hecht ES, Shaddix CR, Geier M, Molina A, Haynes BS, Combust. Flame, 159(11), 3437 (2012)
Yu JL, Tahmasebi A, Han YN, Yin FK, Li XC, Fuel Process. Technol., 106, 9 (2013)
Xia WC, Yang JG, Liang C, Powder Technol., 237, 1 (2013)
Sakaguchi M, Laursen K, Nakagawa H, Miura K, Fuel Process. Technol., 89(4), 391 (2008)
Jia LF, Anthony EJ, Fuel Process. Technol., 92(11), 2138 (2011)
WHO, Air Quality Guidelines for Europe, Copenhagen (2000).
Lee JM, Kim DW, Kim JS, Na JG, Lee SH, Energy, 35(7), 2814 (2010)
Wang X, Zhu H, Wang X, Liu H, Wang F, Yu G, Energy Technol., 2, 598 (2014)
Khan AA, de Jong W, Jansens PJ, Spliethoff H, Fuel Process. Technol., 90(1), 21 (2009)
Gil MV, Riaza J, Alvarez L, Pevida C, Pis JJ, Rubiera F, Journal of Thermal Analysis and Calorimetry, 109, 49 (2012)
Parthasarathy P, Narayanan KS, Arockiam L, Biomass Bioenerg., 58, 58 (2013)
Mansaray KG, Ghaly AE, Energy Sources, 21(9), 773 (1999)
Nassar MM, Energy Sources, 21(1-2), 131 (1999)
Wang CP, Wang FY, Yang QR, Liang RG, Biomass Bioenerg., 33(1), 50 (2009)
Kaitano R, Characterisation and Reaction Kinetics of High Ash Chars Derived from Inertinite-Rich Coal, Ph.D Thesis, North-West University, Potchefstroom Campus, South Africa (2007).
Zhang Z, An Experimental Study of Catalytic Effects on Reaction Kinetics and Producer Gas in Gasification of Coal-Biomass Blend Chars with Steam, M.E. Thesis, University of Canterbury (2011).
Gunes M, Gunes S, Energy Sources, 27(8), 749 (2005)
Ghaly AE, Mansaray KG, Energy Sources, 21(10), 867 (1999)
Peterson JD, Vyazovkin S, Wight CA, Macromol. Chem. Phys., 202, 775 (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로