Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 25, 2017
Accepted March 7, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
V2O5-TiO2 heterostructural semiconductors: Synthesis and photocatalytic elimination of organic contaminant
Chemical Engineering Department, Faculty of Engineering, Istanbul University Avcilar, 34320, Istanbul, Turkey
gpozan@istanbul.edu.tr
Korean Journal of Chemical Engineering, June 2017, 34(6), 1786-1792(7), 10.1007/s11814-017-0065-6
Download PDF
Abstract
V2O5-TiO2 binary oxide catalysts were successfully prepared with different wt% V2O5 loading by solid state mechanical mixing (SSDMMix), and these nanocomposites were modified with hexadecyltrimethylammonium bromide (HTAB) and cetyl trimethylammonium bromide (CTAB) and polyvinyl alcohol (PVA) as surfactant. The resulting catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Braun-Emmet-Teller (BET) analysis of surface area techniques. The photocatalytic activities of all samples were evaluated by degradation of 4-chlorophenol (4CP) in aqueous solution under UV irradiation. 50 wt% V2O5-TiO2 photocatalyst exhibited much higher photocatalytic activity than pure V2O5, TiO2 and P-25. The interaction between V2O5 and TiO2 affected the photocatalytic efficiency of binary oxide catalysts. In addition, CTAB and HTABassisted samples significantly enhanced the efficiency of 50V2O5-TiO2 binary oxide catalyst. The highest percentage of 4-chlorophenol degradation (100%) and highest reaction rate (1.69mg L-1 min-1) were obtained in 30 minutes with (50V2O5-TiO2)-CTAB catalyst. It is concluded that the addition of surfactant to binary oxide remarkably enhanced the photocatalytic activity by modifying the optical and electronic properties of V2O5 and TiO2.
References
Wang RC, Ren DJ, Xia SQ, Zhang YL, Zhao JF, J. Hazard. Mater., 169(1-3), 926 (2009)
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK, J. Phys. Chem., 107, 13871 (2003)
Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253 (2009)
Kuwahara Y, Yamashita H, J. Mater. Chem., 21, 2407 (2011)
Karunakaran C, Gomathisankar P, Manikandan G, Mater. Chem. Phys., 123(2-3), 585 (2010)
Jiang D, Xu Y, Hou B, Wu D, Sun Y, J. Solid State Chem., 180, 1787 (2007)
Akbarzadeh R, Umbarkar SB, Sonawane RS, Takle S, Dongare MK, Appl. Catal. A: Gen., 374(1-2), 103 (2010)
Wang Y, Su YR, Qiao L, Liu LX, Su Q, Zhu CQ, Nanotechnology, 22, 22 (2011)
Liu JF, Wang X, Peng Q, Li YD, Adv. Mater., 17(6), 764 (2005)
Lee K, Wang Y, Cao GH, J. Phys. Chem. B, 109(35), 16700 (2005)
Fei HL, Zhou HJ, Wang JG, Sun PC, Ding DT, Chen TH, Solid State Sci., 10, 102 (2009)
Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669 (1994)
Bai F, Wang DS, Huo ZY, Chen W, Liu LP, Liang X, Chen C, Wang X, Peng Q, Li YD, Angew. Chem.-Int. Edit., 46, 6650 (2007)
Peng Q, Dong YJ, Li YD, Angew. Chem.-Int. Edit., 42, 3027 (2003)
Nithya VD, Selvan RK, Sanjeeviraja C, Radheep DM, Arumugam S, Mater. Res. Bull., 46(10), 1654 (2011)
Bond GC, Tahir SF, Appl. Catal., 71, 1 (1991)
Kanna M, Wongnawa S, Mater. Chem. Phys., 110(1), 166 (2008)
Chen GM, Liu SH, Chen SJ, Qi ZN, Macromol. Chem. Phys., 202, 189 (2001)
Lathasree S, Rao AN, SivaSankar B, Sadasivam V, Rengaraj K, J. Mol. Catal. A-Chem., 223(1-2), 101 (2004)
Yonar T, Kestioglu K, Azbar N, Appl. Catal. B: Environ., 67(3-4), 223 (2006)
Wang Y, Su TR, Qiao L, Su Q, Zhu CQ, Liu XQ, Nanotechnology, 22, 225702 (2011)
Neppolian B, Wang Q, Yamashita H, Choi H, Appl. Catal. A: Gen., 333(2), 264 (2007)
Wu JC, Chung CS, Ay CL, Wang I, J. Catal., 87, 98 (1984)
Zhang LF, Kanki T, Sano N, Toyoda A, Sol. Energy, 70(4), 331 (2001)
Vione D, Minero C, Maurino V, Carlotti AE, Picatonotto T, Pelizzetti E, Appl. Catal. B: Environ., 58(1-2), 79 (2005)
Xu YM, Langford CH, J. Phys. Chem., 99(29), 11501 (1995)
Tryba B, Morawski AW, Inagaki M, Toyoda M, Appl. Catal. B: Environ., 63(3-4), 215 (2006)
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK, J. Phys. Chem., 107, 13871 (2003)
Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253 (2009)
Kuwahara Y, Yamashita H, J. Mater. Chem., 21, 2407 (2011)
Karunakaran C, Gomathisankar P, Manikandan G, Mater. Chem. Phys., 123(2-3), 585 (2010)
Jiang D, Xu Y, Hou B, Wu D, Sun Y, J. Solid State Chem., 180, 1787 (2007)
Akbarzadeh R, Umbarkar SB, Sonawane RS, Takle S, Dongare MK, Appl. Catal. A: Gen., 374(1-2), 103 (2010)
Wang Y, Su YR, Qiao L, Liu LX, Su Q, Zhu CQ, Nanotechnology, 22, 22 (2011)
Liu JF, Wang X, Peng Q, Li YD, Adv. Mater., 17(6), 764 (2005)
Lee K, Wang Y, Cao GH, J. Phys. Chem. B, 109(35), 16700 (2005)
Fei HL, Zhou HJ, Wang JG, Sun PC, Ding DT, Chen TH, Solid State Sci., 10, 102 (2009)
Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669 (1994)
Bai F, Wang DS, Huo ZY, Chen W, Liu LP, Liang X, Chen C, Wang X, Peng Q, Li YD, Angew. Chem.-Int. Edit., 46, 6650 (2007)
Peng Q, Dong YJ, Li YD, Angew. Chem.-Int. Edit., 42, 3027 (2003)
Nithya VD, Selvan RK, Sanjeeviraja C, Radheep DM, Arumugam S, Mater. Res. Bull., 46(10), 1654 (2011)
Bond GC, Tahir SF, Appl. Catal., 71, 1 (1991)
Kanna M, Wongnawa S, Mater. Chem. Phys., 110(1), 166 (2008)
Chen GM, Liu SH, Chen SJ, Qi ZN, Macromol. Chem. Phys., 202, 189 (2001)
Lathasree S, Rao AN, SivaSankar B, Sadasivam V, Rengaraj K, J. Mol. Catal. A-Chem., 223(1-2), 101 (2004)
Yonar T, Kestioglu K, Azbar N, Appl. Catal. B: Environ., 67(3-4), 223 (2006)
Wang Y, Su TR, Qiao L, Su Q, Zhu CQ, Liu XQ, Nanotechnology, 22, 225702 (2011)
Neppolian B, Wang Q, Yamashita H, Choi H, Appl. Catal. A: Gen., 333(2), 264 (2007)
Wu JC, Chung CS, Ay CL, Wang I, J. Catal., 87, 98 (1984)
Zhang LF, Kanki T, Sano N, Toyoda A, Sol. Energy, 70(4), 331 (2001)
Vione D, Minero C, Maurino V, Carlotti AE, Picatonotto T, Pelizzetti E, Appl. Catal. B: Environ., 58(1-2), 79 (2005)
Xu YM, Langford CH, J. Phys. Chem., 99(29), 11501 (1995)
Tryba B, Morawski AW, Inagaki M, Toyoda M, Appl. Catal. B: Environ., 63(3-4), 215 (2006)