Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 13, 2016
Accepted March 7, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Enhanced photoactivity of stable colloidal TiO2 nanoparticles prepared in water by nanosecond infrared laser pulses
Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
hkang@ajou.ac.kr
Korean Journal of Chemical Engineering, June 2017, 34(6), 1822-1826(5), 10.1007/s11814-017-0068-3
Download PDF
Abstract
A simple laser ablation technique was used to prepare a stable colloidal TiO2 suspension in pure water. A transparent TiO2 aqueous solution was obtained within a few minutes and its photoactivity for the degradation of methylene blue was measured to be higher than that of commercial TiO2 nanoparticles. SEM analysis revealed that the average size of the nanoparticles increased from 20 to 40 nm as the laser power was raised from 0.5 to 2W. The variation in size, however, had little influence on the resulting photodegradation rate under the given condition. Instead, the photodegradation rate is related to the number of colloidal TiO2 particles in the aqueous solution, which increases proportionally to the ablation time. As the TiO2 particle density increases, however, the photoactivity is measured to be gradually reduced due to the formation of TiO2 aggregates. Thus, the optimum ablation time is 10-30 min under our ablation condition. Our results show that well-dispersed small TiO2 nanoparticles of about a few tens nm can be readily formed by laser ablation within only a few minutes and can be used as highly efficient photocatalysts for photocatalytic remediation of water.
References
Intartaglia R, Das G, Bagga K, Gopalakrishnan A, Genovese A, Povia M, Fabrizio ED, Cingolani R, Diaspro A, Brandi F, Phys. Chem. Chem. Phys., 15, 3075 (2013)
Barcikowski S, Compagnini G, Phys. Chem. Chem. Phys., 15, 3022 (2013)
Itina TE, J. Phys. Chem. C, 115, 5044 (2011)
Lin BC, Shen P, Chen SY, J. Phys. Chem. C, 115, 5003 (2011)
Intartaglia R, Bagga K, Brandi F, Das G, Genovese A, Fabrizio ED, Diaspro A, J. Phys. Chem. C, 115, 5012 (2011)
Ikeda M, Kusumoto Y, Yang H, Somekawa S, Uenjyo H, Abdulla-Al-Mamun M, Horie Y, Catal. Commun., 9, 1329 (2008)
Wang HQ, Koshizaki N, Li L, Jia LC, Kawaguchi K, Li XY, Pyatenko A, Swiatkowska-Warkocka Z, Bando Y, Golberg D, Adv. Mater., 23(16), 1865 (2011)
Hashimoto K, Irie H, Fujishima A, Jpn. J. Appl. Phys., 44, 8269 (2005)
Ni M, Leung MKH, Leung DYC, Sumathy K, Renew. Sust. Energ. Rev., 11, 401 (2007)
Teh CY, Wu TY, Juan JC, Chem. Eng. J., In Press (2017), DOI:10.1016/j.cej.2017.01.001.
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Kumar SG, Devi LG, J. Phys. Chem. A, 115(46), 13211 (2011)
Landis EC, Phillips KC, Mazur E, Friend CM, J. Appl. Phys., 112, 063108 (2012)
Jandova V, Kupcik J, Bastl Z, Subrt J, Pola J, Solid State Sci., 19, 104 (2013)
De Bonis A, Galasso A, Ibris N, Laurita A, Santagata A, Teghil R, Appl. Surf. Sci., 268, 571 (2013)
Huang CN, Bow JS, Zheng Y, Chen SY, Ho N, Shen P, Nanoscale Res. Lett., 5, 972 (2010)
Chang EC, Lin BC, Shen P, Chen SY, J. Nanosci. Nanotechnol., 12, 8337 (2012)
Nath A, Laha SS, Khare A, Appl. Surf. Sci., 257(7), 3118 (2011)
Zimbone M, Buccheri MA, Cacciato G, Sanz R, Rappazzo G, Boninelli S, Reitano R, Romano L, Privitera V, Grimaldi MG, Appl. Catal. B: Environ., 165, 487 (2015)
Panomsuwan G, Watthanaphanit A, Ishizaki T, Saito N, Phys. Chem. Chem. Phys., 17, 13794 (2015)
Korstgens V, Proller S, Buchmann T, Gonzalez DM, Song L, Yao Y, Wang W, Werhahn J, Santoro G, Roth SV, Iglev H, Kienberger R, Muller-Buschbaum P, Nanoscale, 7, 2900 (2015)
Ohtsu N, Kodama K, Kitagawa K, Wagatsuma K, Appl. Surf. Sci., 256(14), 4522 (2010)
Nolte S, Momma C, Jacobs H, Tunnermann A, Chichkov BN, Wellegehausen B, Welling H, J. Opt. Soc. Am. B, 14, 2716 (1997)
Kelly R, Miotello A, Appl. Surf. Sci., 96-98, 205 (1996)
Besner S, Kabashin AV, Meunier M, Appl. Phys. Lett., 89, 233122 (2006)
Yu X, Kim B, Kim YK, ACS Catal, 3, 2479 (2013)
Wang Y, Herron N, J. Phys. Chem., 95, 525 (1991)
Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP, Chem. Eur. J., 8, 28 (2002)
Kavan L, Stoto T, Graetzel M, Fitzmaurice D, Shklover V, J. Phys. Chem., 97, 9493 (1993)
Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669 (1994)
Anpo M, Shima T, Kodama S, Kubokawa Y, J. Phys. Chem., 91, 4305 (1987)
Kormann C, Bahnemann DW, Hoffmann MR, J. Phys. Chem., 92, 5196 (1988)
Joselevich E, Willner I, J. Phys. Chem., 98(31), 7628 (1994)
Serpone N, Lawless D, Khairutdinov R, J. Phys. Chem., 99(45), 16646 (1995)
Brus L, J. Phys. Chem., 90, 2555 (1986)
Kasinski JJ, Gomez-Jahn LA, Faran KJ, Gracewski SM, Miller RJD, J. Chem. Phys., 90, 1253 (1989)
Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G, Nanotechnology, 19, 145605 (2008)
Teh CY, Wu TY, Juan JC, Catal. Today, 256, 365 (2015)
Calloni A, Brambilla A, Berti G, Bussetti G, Canesi EV, Binda M, Petrozza A, Finazzi M, Ciccacci F, Duo L, Langmuir, 29(26), 8302 (2013)
Barcikowski S, Compagnini G, Phys. Chem. Chem. Phys., 15, 3022 (2013)
Itina TE, J. Phys. Chem. C, 115, 5044 (2011)
Lin BC, Shen P, Chen SY, J. Phys. Chem. C, 115, 5003 (2011)
Intartaglia R, Bagga K, Brandi F, Das G, Genovese A, Fabrizio ED, Diaspro A, J. Phys. Chem. C, 115, 5012 (2011)
Ikeda M, Kusumoto Y, Yang H, Somekawa S, Uenjyo H, Abdulla-Al-Mamun M, Horie Y, Catal. Commun., 9, 1329 (2008)
Wang HQ, Koshizaki N, Li L, Jia LC, Kawaguchi K, Li XY, Pyatenko A, Swiatkowska-Warkocka Z, Bando Y, Golberg D, Adv. Mater., 23(16), 1865 (2011)
Hashimoto K, Irie H, Fujishima A, Jpn. J. Appl. Phys., 44, 8269 (2005)
Ni M, Leung MKH, Leung DYC, Sumathy K, Renew. Sust. Energ. Rev., 11, 401 (2007)
Teh CY, Wu TY, Juan JC, Chem. Eng. J., In Press (2017), DOI:10.1016/j.cej.2017.01.001.
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Kumar SG, Devi LG, J. Phys. Chem. A, 115(46), 13211 (2011)
Landis EC, Phillips KC, Mazur E, Friend CM, J. Appl. Phys., 112, 063108 (2012)
Jandova V, Kupcik J, Bastl Z, Subrt J, Pola J, Solid State Sci., 19, 104 (2013)
De Bonis A, Galasso A, Ibris N, Laurita A, Santagata A, Teghil R, Appl. Surf. Sci., 268, 571 (2013)
Huang CN, Bow JS, Zheng Y, Chen SY, Ho N, Shen P, Nanoscale Res. Lett., 5, 972 (2010)
Chang EC, Lin BC, Shen P, Chen SY, J. Nanosci. Nanotechnol., 12, 8337 (2012)
Nath A, Laha SS, Khare A, Appl. Surf. Sci., 257(7), 3118 (2011)
Zimbone M, Buccheri MA, Cacciato G, Sanz R, Rappazzo G, Boninelli S, Reitano R, Romano L, Privitera V, Grimaldi MG, Appl. Catal. B: Environ., 165, 487 (2015)
Panomsuwan G, Watthanaphanit A, Ishizaki T, Saito N, Phys. Chem. Chem. Phys., 17, 13794 (2015)
Korstgens V, Proller S, Buchmann T, Gonzalez DM, Song L, Yao Y, Wang W, Werhahn J, Santoro G, Roth SV, Iglev H, Kienberger R, Muller-Buschbaum P, Nanoscale, 7, 2900 (2015)
Ohtsu N, Kodama K, Kitagawa K, Wagatsuma K, Appl. Surf. Sci., 256(14), 4522 (2010)
Nolte S, Momma C, Jacobs H, Tunnermann A, Chichkov BN, Wellegehausen B, Welling H, J. Opt. Soc. Am. B, 14, 2716 (1997)
Kelly R, Miotello A, Appl. Surf. Sci., 96-98, 205 (1996)
Besner S, Kabashin AV, Meunier M, Appl. Phys. Lett., 89, 233122 (2006)
Yu X, Kim B, Kim YK, ACS Catal, 3, 2479 (2013)
Wang Y, Herron N, J. Phys. Chem., 95, 525 (1991)
Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP, Chem. Eur. J., 8, 28 (2002)
Kavan L, Stoto T, Graetzel M, Fitzmaurice D, Shklover V, J. Phys. Chem., 97, 9493 (1993)
Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669 (1994)
Anpo M, Shima T, Kodama S, Kubokawa Y, J. Phys. Chem., 91, 4305 (1987)
Kormann C, Bahnemann DW, Hoffmann MR, J. Phys. Chem., 92, 5196 (1988)
Joselevich E, Willner I, J. Phys. Chem., 98(31), 7628 (1994)
Serpone N, Lawless D, Khairutdinov R, J. Phys. Chem., 99(45), 16646 (1995)
Brus L, J. Phys. Chem., 90, 2555 (1986)
Kasinski JJ, Gomez-Jahn LA, Faran KJ, Gracewski SM, Miller RJD, J. Chem. Phys., 90, 1253 (1989)
Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G, Nanotechnology, 19, 145605 (2008)
Teh CY, Wu TY, Juan JC, Catal. Today, 256, 365 (2015)
Calloni A, Brambilla A, Berti G, Bussetti G, Canesi EV, Binda M, Petrozza A, Finazzi M, Ciccacci F, Duo L, Langmuir, 29(26), 8302 (2013)