Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 10, 2016
Accepted February 6, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Performance evaluation of a novel reactor configuration for oxidative dehydrogenation of ethane to ethylene
Department of Chemical Engineering, University of Tehran, Tehran, Iran 1NFCRS, Nuclear Science and Technology Research Institute, Tehran, Iran
j_karimi@alum.sharif.edu
Korean Journal of Chemical Engineering, July 2017, 34(7), 1905-1913(9), 10.1007/s11814-017-0025-1
Download PDF
Abstract
A one-dimensional non-isothermal steady state model was developed to simulate the performance of three-reactor configurations for the oxidative dehydrogenation of ethane (ODHE) to ethylene. These configurations consist of side feeding reactor (SFR), conventional fixed bed reactor (CFBR) and membrane reactor (MR). The performance of these reactors was compared in the terms of C2H6 conversion, C2H4 and CO2 selectivity and temperature profiles. The use of sectional air injections on the wall of SFR with a limited number of injection points showed that the performance of reactor significantly improves and optimum pattern of oxygen consumption is also obtained. Moreover, our SFR with a liquid coolant medium operates in an effectively controlled temperature profile that is comparable with that of the MR, which is cooled by a coolant stream of air. Hence, an enhancement in the level of selectivity is obtained for the SFR configuration. Consequently, the side feeding procedure can decrease the high operating temperature problem and low ethylene selectivity in the ODHE process. According to obtained results, the SFR would be a proper alternative for both the MR and CFBR.
Keywords
References
Weng W, Davies M, Whiting G, Solsona B, Kiely CJ, Carley AF, Taylor SH, PCCP, 13, 17395 (2011)
Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu IC, PCCP, 17, 8138 (2015)
Tsilomelekis G, Boghosian S, PCCP, 14, 2216 (2012)
Lin Z, Zhong S, Grierson D, J. Exp. Bot., 60, 3311 (2009)
McCoy M, Reisch M, Tullo A, Short P, Tremblay J, Storck W, Chem. Eng. News, 84, 59 (2006)
Rahmani F, Haghighi M, Korean J. Chem. Eng., 33(9), 2555 (2016)
Ahchieva D, Peglow M, Heinrich S, Morl L, Wolff T, Klose F, Appl. Catal. A: Gen., 296, 176 (2005)
Cavani F, Ballarini N, Cericola A, Catal. Today, 127(1-4), 113 (2007)
Yang JI, Kim JN, Cho SH, Krishnamurthy KR, Korean J. Chem. Eng., 21(2), 381 (2004)
Rose LM, Chemical reactor design in practice, Elsevier Scientific Pub. Co. (1981).
Kong SJ, Jun JH, Yoon KJ, Korean J. Chem. Eng., 21(4), 793 (2004)
Moon WS, Park SB, Yang SM, Korean J. Chem. Eng., 15(2), 136 (1998)
Arpentinier P, Cavani F, Trifiro F, The Technology of Catalytic Oxidations, Technip, Paris (2001).
Al-Sherehy FA, Adris AM, Soliman MA, Hughes R, Chem. Eng. Sci., 53(23), 3965 (1998)
Armor J, Appl. Catal., 49, 1 (1989)
Zaman J, Chakma A, J. Membr. Sci., 92(1), 1 (1994)
Wang HH, Cong Y, Yang WS, Catal. Today, 82(1-4), 157 (2003)
Pedernera M, Mallada R, Menendez M, Santamaria J, AIChE J., 46(12), 2489 (2000)
Rodriguez MAL, Ardissone DE, Lemonidou AA, Heracleous E, Lopez EL, Pedernera MN, Borio DO, Ind. Eng. Chem. Res., 48, 1090 (2008)
Tsai CY, Dixon AG, Moser WR, Ma YH, AIChE J., 43(11), 2741 (1997)
Tellez C, Menendez M, Santamaria J, AIChE J., 43(3), 777 (1997)
Lopez E, Heracleous E, Lemonidou AA, Borio DO, Chem. Eng. J., 145(2), 308 (2008)
Kao YK, Lei L, Lin YS, Ind. Eng. Chem. Res., 36(9), 3583 (1997)
Rodriguez ML, Ardissone DE, Heracleous E, Lemonidou AA, Lopez E, Pedernera MN, Borio DO, Catal. Today, 157(1-4), 303 (2010)
Dashliborun AM, Fatemi S, Najafabadi AT, Int. J. Hydrog. Energy, 38(4), 1901 (2013)
Kiatkittipong W, Tagawa T, Goto S, Assabumrungrat S, Silpasup K, Praserthdam P, Chem. Eng. J., 115(1-2), 63 (2005)
Heracleous E, Lemonidou AA, J. Catal., 237(1), 175 (2006)
Heracleous E, Lemonidou AA, J. Catal., 237(1), 162 (2006)
Rodriguez ML, Ardissone DE, Lopez E, Pedernera MN, Borioi DO, Ind. Eng. Chem. Res., 50(5), 2690 (2011)
Munro M, J. Am. Ceram. Soc., 80, 1919 (1997)
Froment GF, Bischoff KB, De Wilde J, Chemical reactor analysis and design, Wiley New York (1990).
Kern DQ, Process heat transfer, Tata McGraw-Hill Education (1950).
Skoufa Z, Heracleous E, Lemonidou AA, Chem. Eng. Sci., 84, 48 (2012)
Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu IC, PCCP, 17, 8138 (2015)
Tsilomelekis G, Boghosian S, PCCP, 14, 2216 (2012)
Lin Z, Zhong S, Grierson D, J. Exp. Bot., 60, 3311 (2009)
McCoy M, Reisch M, Tullo A, Short P, Tremblay J, Storck W, Chem. Eng. News, 84, 59 (2006)
Rahmani F, Haghighi M, Korean J. Chem. Eng., 33(9), 2555 (2016)
Ahchieva D, Peglow M, Heinrich S, Morl L, Wolff T, Klose F, Appl. Catal. A: Gen., 296, 176 (2005)
Cavani F, Ballarini N, Cericola A, Catal. Today, 127(1-4), 113 (2007)
Yang JI, Kim JN, Cho SH, Krishnamurthy KR, Korean J. Chem. Eng., 21(2), 381 (2004)
Rose LM, Chemical reactor design in practice, Elsevier Scientific Pub. Co. (1981).
Kong SJ, Jun JH, Yoon KJ, Korean J. Chem. Eng., 21(4), 793 (2004)
Moon WS, Park SB, Yang SM, Korean J. Chem. Eng., 15(2), 136 (1998)
Arpentinier P, Cavani F, Trifiro F, The Technology of Catalytic Oxidations, Technip, Paris (2001).
Al-Sherehy FA, Adris AM, Soliman MA, Hughes R, Chem. Eng. Sci., 53(23), 3965 (1998)
Armor J, Appl. Catal., 49, 1 (1989)
Zaman J, Chakma A, J. Membr. Sci., 92(1), 1 (1994)
Wang HH, Cong Y, Yang WS, Catal. Today, 82(1-4), 157 (2003)
Pedernera M, Mallada R, Menendez M, Santamaria J, AIChE J., 46(12), 2489 (2000)
Rodriguez MAL, Ardissone DE, Lemonidou AA, Heracleous E, Lopez EL, Pedernera MN, Borio DO, Ind. Eng. Chem. Res., 48, 1090 (2008)
Tsai CY, Dixon AG, Moser WR, Ma YH, AIChE J., 43(11), 2741 (1997)
Tellez C, Menendez M, Santamaria J, AIChE J., 43(3), 777 (1997)
Lopez E, Heracleous E, Lemonidou AA, Borio DO, Chem. Eng. J., 145(2), 308 (2008)
Kao YK, Lei L, Lin YS, Ind. Eng. Chem. Res., 36(9), 3583 (1997)
Rodriguez ML, Ardissone DE, Heracleous E, Lemonidou AA, Lopez E, Pedernera MN, Borio DO, Catal. Today, 157(1-4), 303 (2010)
Dashliborun AM, Fatemi S, Najafabadi AT, Int. J. Hydrog. Energy, 38(4), 1901 (2013)
Kiatkittipong W, Tagawa T, Goto S, Assabumrungrat S, Silpasup K, Praserthdam P, Chem. Eng. J., 115(1-2), 63 (2005)
Heracleous E, Lemonidou AA, J. Catal., 237(1), 175 (2006)
Heracleous E, Lemonidou AA, J. Catal., 237(1), 162 (2006)
Rodriguez ML, Ardissone DE, Lopez E, Pedernera MN, Borioi DO, Ind. Eng. Chem. Res., 50(5), 2690 (2011)
Munro M, J. Am. Ceram. Soc., 80, 1919 (1997)
Froment GF, Bischoff KB, De Wilde J, Chemical reactor analysis and design, Wiley New York (1990).
Kern DQ, Process heat transfer, Tata McGraw-Hill Education (1950).
Skoufa Z, Heracleous E, Lemonidou AA, Chem. Eng. Sci., 84, 48 (2012)