ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 9, 2017
Accepted April 12, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Quantification of the risk for hydrate formation during cool down in a dispersed oil-water system

1Hydrates Energy Innovation Laboratory, Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401, U.S.A., USA 2Department of Chemical Engineering, Pohang University of Science & Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
Korean Journal of Chemical Engineering, July 2017, 34(7), 2043-2048(6), 10.1007/s11814-017-0112-3
downloadDownload PDF

Abstract

Gas hydrates are considered a nuisance in the flow assurance of oil and gas production since they can block the flowlines, consequently leading to significant losses in production. Hydrate avoidance has been the traditional approach, but recently, hydrate management is gaining acceptance because the practiceof hydrate avoidance has become more and more challenging. For better management of hydrate formation, we investigated the risk of hydrate formation based on the subcooling range in which hydrates form by associating low, medium, and high probability of formation for a gas+oil+water system. The results are based on batch experiments which were performed in an autoclave cell using a mixture gas (CH4 : C3H8=91.9 : 8.1mol%), total liquid volume (200 ml), mineral oil, watercut (30%), and mixing speed (300 rpm). From the measurements of survival curves showing the minimum subcooling required before hydrate can form and hydrate conversion rates for the initial 20 minutes, we developed a risk map for hydrate formation.

References

Sloan ED, Koh C, Clathrate Hydrates of Natural Gases, 3rd Ed., CRC Press (2007).
Hammerschmidt EG, Ind. Eng. Chem., 26, 851 (1934)
Sloan ED, Koh C, Sum AK, Natural Gas Hydrates in Flow Assurance, Elsevier, Amsterdam (2010).
Dholabhai PD, Parent JS, Bishnoi PR, Ind. Eng. Chem. Res., 35(3), 819 (1996)
Mohammadi AH, Aftal W, Richon D, J. Chem. Eng. Data, 53(1), 73 (2008)
Majumdar A, Mahmoodaghdam E, Bishnoi PR, J. Chem. Eng. Data, 45, 20 (2000)
Afzal W, Mohammadi AH, Richon D, J. Chem. Eng. Data, 53(3), 663 (2008)
Afkal W, Mohammadi AH, Richon D, J. Chem. Eng. Data, 52(5), 2053 (2007)
Shin K, Kim J, Seo Y, Kang SP, Korean J. Chem. Eng., 31(12), 2177 (2014)
Vysniauskas A, Bishnoi PR, Chem. Eng. Sci., 38, 1061 (1983)
Bishnoi PR, Gupta AK, Englezos P, Kalogerakis N, Fluid Phase Equilib., 53, 97 (1989)
Bishnoi PR, Natarajan V, Fluid Phase Equilib., 117(1-2), 168 (1996)
Lee D, Lee Y, Choi W, Lee S, Seo Y, Korean J. Chem. Eng., 33(4), 1425 (2016)
Sloan ED, Fluid Phase Equilib., 228-229, 67 (2005)
Kinnari K, Hundseid J, Li XY, Askvik KM, J. Chem. Eng. Data, 60(2), 437 (2015)
Straume EO, Kakitani C, Merino-Garcia D, Morales REM, Sum AK, Chem. Eng. Sci., 155, 111 (2016)
Maeda N, Wells D, Becker NC, Hartley PG, Wilson PW, Haymet ADJ, Kozielski KA, Rev. Sci. Instrum., 82, 065109 (2011)
Maeda N, Wells D, Hartley PG, Kozielski KA, Energy Fuels, 26(3), 1820 (2012)
Maeda N, Fluid Phase Equilib., 413, 142 (2016)
Wilson PW, Heneghan AF, Haymet ADJ, Cryobiology, 46, 88 (2003)
Wilson PW, Lester D, Haymet ADJ, Chem. Eng. Sci., 60(11), 2937 (2005)
Linga P, Kumar RN, Englezos P, Chem. Eng. Sci., 62(16), 4268 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로