ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 23, 2016
Accepted April 4, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Formation and stability study of silver nano-particles in aqueous and organic medium

Department of Ocean System Engineering, College of Marine Science, Gyeongsang National University, Cheondaegukchi-gil 38, Tongyeong, Gyeongnam 53064, Korea 1**Department of Marine Environmental Engineering, College of Marine Science, Engineering Research Institute (ERI), Gyeongsang National University, Cheondaegukchi-gil 38, Tongyeong, Gyeongnam 53064, Korea 2Department of Energy and Environmental Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Asan-si, Chungcheongnam-do 31538, Korea
shkwon@gnu.ac.kr
Korean Journal of Chemical Engineering, July 2017, 34(7), 2072-2078(7), 10.1007/s11814-017-0096-z
downloadDownload PDF

Abstract

Colloidal silver nanoparticles were obtained by chemical reduction of silver nitrate in water and organic solvent with sodium borohydride. The effects of oxidant, reducing agent, stabilizer, and temperature, during the growth of silver nanoparticles were discussed. As the reaction proceeded in aqueous medium a characteristic plasmon absorption peak between 390-420 nm appeared as presence of silver nanoparticles. The peak intensities and shifting (blue or red) were altered in accordance with some applied factors. The formed silver nanoparticles were found to be with particles size range from 3 to 20 nm. The change rates of Ag+ ions to Ag0 in aqueous and organic solvent are strongly temperature dependent, although reduction can take place at room temperature. The silver nano-colloid with negative zeta potential also has been confirmed to be more stable. Obtained nanoparticles were characterized by UV-vis spectrophotometer, particle analyzer for zeta (ζ) potential, polydispersity index (PDI), and transmission electron microscope (TEM).

References

Shing C, Sharma V, Naik P, Khandelwal V, Singh H, Digest J. Nanomat Biostruct, 6(2), 535 (2011)
Sun Y, Xia Y, Science, 298, 2176 (2002)
Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge E, Peale F, Bruchez MP, National Biotechnol., 21, 41 (2003)
Ruivo A, Gomes C, Lima A, Botelho ML, Melo R, Belchior A, Matos AP, J. Cult. Herit, 9, e134 (2008)
Bobin O, Schvoerer M, Ney C, Rammah M, Pannequin B, Platamone EC, Daoulatli A, Gayraud RP, Color Res. Appl., 28(5), 352 (2003)
Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G, Toxicology, 291(1-3), 65 (2011)
Ramos M, Ferrer DA, Chianelli RR, Correa V, Serrano JM, Flores S, J. Nanomaterials, 1 (2011).
Zheng Y, Xiao M, Jiang S, Ding F, Wang J, Nanoscale, 5, 788 (2013)
Tang B, Wang JF, Xu SP, Afrin T, Tao JL, Xu WQ, Sun L, Wang XG, Chem. Eng. J., 185, 366 (2012)
Tang B, Li JL, Hou XL, Afrin T, Sun L, Wang XG, Ind. Eng. Chem. Res., 52(12), 4556 (2013)
Li P, Li J, Wu C, Wu Q, Li J, Nanotechnology, 16, 1912 (2005)
Elechiguerra JL, Burt JL, Morones JR, A. Camacho-Bragado, Gao X, Lara HH, Yacaman MJ, J. Nanobiotechnol., 3, 6 (2005), http://www.jnanobiotechnology.com/content/3/1/6.
Jin R, Cao Y, Mirkin A, Kelly KL, Schatz GC, Zhang JG, Science, 294, 1901 (2001)
de Barros RA, Martins CR, de Azevedo WM, Synth. Met., 155, 35 (2005), DOI:10.1016/j.synthmet.2005.05.014.
Kelly KL, Coronado E, Zhao LL, Schatz GC, J. Phys. Chem. B, 107, 668 (2002)
Kleinman SL, Sharma B, Blaber MG, Henry AI, Valley N, Freeman RG, Natan MJ, Schatz GC, Duyne RPV, J. Am. Ceram. Soc., 135, 301 (2013)
Szunerits S, Boukherroub R, Chem. Commun., 48, 8999 (2012)
Henry AI, Bingham JM, Ringe E, Marks LD, Schatz GC, van Duyne RP, J. Phys. Chem. C, 115, 9291 (2011)
Lizmarzan LM, Ladotourino I, Langmuir, 12(15), 3585 (1996)
Rashid AK, Renat RK, Olga G, Yuri E, Thomas S, Nanopart. Res., 11, 1193 (2009)
Smetana AB, Klabunde KJ, Sorensen CM, J. Colloid Interface Sci., 284(2), 521 (2005)
Lee KJ, Jun BH, Choi J, Lee YI, Joung J, Oh YS, Nanotechnology, 18, 335601 (2007)
Silvert PY, Herrera-Urbina R, Duvauchelle N, Vijayakrishnan V, J. Mater. Chem., 6(4), 573 (1996)
Sun YP, Atorngitjawat P, Meziani MJ, Langmuir, 17(19), 5707 (2001)
Henglein A, Chem. Mater., 10(1), 444 (1998)
Kaushik T, Mhatre S, Parikh R, Nanomed Nanotechnol. Bio. Med., 6(2), 257 (2010)
Kim KD, Han DN, Kim HT, Chem. Eng. J., 104(1-3), 55 (2004)
Van Hyning DL, Zukoski CF, Langmuir, 14(24), 7034 (1998)
Chen JP, Lim LL, Chemosphere, 49(4), 363 (2002)
Tao A, Sinsermsuksaku P, Yang P, Angew. Chem.-Int. Edit., 45, 4597 (2006)
Van Hyning DL, Klemperer WG, Zukoski CF, Langmuir, 17(11), 3128 (2001)
Wang G, Shi C, Zhao N, Du X, Mater. Lett., 61, 3795 (2007)
Song KC, Lee SM, Park TS, Lee BS, Korean J. Chem. Eng., 26(1), 153 (2009)
Liu J, Lee JB, Kim DH, Kim Y, Colloids Surf. A: Physicochem. Eng. Asp., 302, 276 (2007)
Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C, J. Chem. Educ., 84, 322 (2007)
Eastman J, Cosgrove T, Ed., p. 54, Blackwell UK (2005).
Farias TL, Koylu UO, MG, J. Quant. Spectrosc. Radiar. Transfer, 55(3), 357 (1996)
Glomm WR, J. Dispersion Sci. Technol., 26, 389 (2005)
Victor Elias Torres Heredia, doctoral thesis (2011).
Mogensen KB, Kneipp K, J. Phys. Chem. C, 118, 28075 (2014)
Khan SS, Mukherjee A, Chandrasekaran N, Water Res., 45, 5184 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로