Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 21, 2016
Accepted April 25, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Porous MnO2/CNT catalysts with a large specific surface area for the decomposition of hydrogen peroxide
1Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seoul 02841, Korea 2Advanced Analysis Center and Green City Technology Institute, Korea Institute of Science & Technology, Seoul 02792, Korea 3Green School, Korea University, 145 Anam-ro, Seoul 02841, Korea
bluebird18@korea.ac.kr
Korean Journal of Chemical Engineering, August 2017, 34(8), 2147-2153(7), 10.1007/s11814-017-0120-3
Download PDF
Abstract
H2O2 vapor sterilization is an effective and safe method for removing various pathogens. To improve the efficiency of this technique, the time required for sterilization must be shortened. The aeration time constitutes a large portion of the total sterilization time; therefore, the development of a catalyst for H2O2 decomposition is necessary. Bulk MnO2 is typically used in H2O2 decomposition, but it has a low specific surface area. To increase H2O2 decomposition activity, specific surface area and electron transfer ability of catalyst need improvement. In this study, MnO2/ CNT(x), where x denotes the weight ratio of CTAB to H2O in the catalyst preparation, was synthesized using a soft template method with varying amounts of the template. Overall, the catalyst specific surface area remarkably increased to 190-200m2/g from 0.043m2/g for bulk MnO2 and these increased surface areas resulted in superior H2O2 decomposition activity. Among the CNT-supported catalysts tested, MnO2/CNT (1.0) exhibited the highest activity, which was 570 times that of bulk MnO2. Aeration times were also calculated with some assumptions and the aeration can be finished within 1 hr (bulk MnO2 needs about 25 hr).
Keywords
References
de Wit E, van Doremalen N, Falzarano D, Munster VJ, Nat. Rev. Microbiol., 14, 523 (2016)
Molins RA. Food irradiation: Principles and applications, Wiley- IEEE, New York (2001).
Alfa MJ, DeGagne P, Olson N, Hizon R, Am. J. Infect. Control., 26, 469 (1998)
Berry DJ, Currier BH, Mayor MB, Collier JP, Clin. Orthop. Rel. Res, 470, 1805 (2012)
Matser AM, Krebbers B, van den Berg RW, Bartels PV, Trends Food Sci. Technol., 15, 79 (2004)
King RS, Devanathan TNC, Lin ST, Rohr WL, Swarts DF, US Patent, 5,522,897 (1995).
Landrigan PJ, Meinhardt TJ, Gordon J, Lipscomb JA, Burg JR, Mazzuckelli LF, Lewis TR, Lemen RA, Am. J. Ind. Med., 6, 103 (1984)
Holmdahl T, Lanbeck P, Wullt M, Walder MH, Infect. Control Hosp. Epidemiol., 32, 831 (2011)
Mastrangelo G, Zanibellato R, Fedeli U, Fadda E, Lange JH, Int. J. Environ. Health Res., 15, 313 (2005)
Bianchi G, Mazza F, Mussini T, Electrochim. Acta, 7, 457 (1962)
Jeong HE, Kim S, Seo MG, Lee DW, Lee KY, J. Mol. Catal. A-Chem., 420, 88 (2016)
Seo MG, Kim S, Lee DW, Jeong HE, Lee KY, Appl. Catal. A: Gen., 511, 87 (2016)
Seo MG, Kim S, Jeong HE, Lee DW, Lee KY, J. Mol. Catal. A-Chem., 413, 1 (2016)
Seo MG, Kim HJ, Han SS, Lee KY, Catal. Surv. Asia, 21, 1 (2017)
Hasan MA, Zaki MI, Pasupulety L, Kumari K, Appl. Catal. A: Gen., 181(1), 171 (1999)
Hermanek M, Zboril R, Medrik N, Pechousek J, Gregor C, J. Am. Chem. Soc., 129(35), 10929 (2007)
Kim G, Jung KY, Lee CH, Han JS, Jeong BH, Park YK, Jeon JK, Mater. Res. Bull., 82, 76 (2016)
Lee YN, Lago RM, Fierro JLG, Gonzalez J, Appl. Catal. A: Gen., 215(1-2), 245 (2001)
Gupta KC, Abdulkadir HK, Chand S, J. Mol. Catal. A-Chem., 202(1-2), 253 (2003)
Zhang K, Zhang C, Xie K, Text. Res. J., 85, 1704 (2015)
Walling C, Goosen A, J. Am. Chem. Soc., 95, 2987 (1973)
Lee DW, Lee MS, Lee JY, Kim S, Eom HJ, Moon DJ, Lee KY, Catal. Today, 210, 2 (2013)
Baek SC, Bae JW, Cheon JY, Jun KW, Lee KY, Catal. Lett., 141(2), 224 (2011)
Ryu JH, Lee KY, La H, Kim HJ, Yang JI, Jung H, J. Power Sources, 171(2), 499 (2007)
Wang T, Zhang X, Liu H, Guo Y, Zhang Y, Wang Y, Sun B, Catal. Surv. Asia, 21, 94 (2017)
Jeon SW, Lee JE, Park JK, Kim SH, Korean J. Chem. Eng., 32(2), 230 (2015)
Amini M, Korean J. Chem. Eng., 33(1), 126 (2016)
Lee YH, Kim H, Choi HS, Lee DW, Lee KY, Korean J. Chem. Eng., 32(11), 2220 (2015)
Du X, Zou G, Wang X, Catal. Surv. Asia, 19, 17 (2015)
Ghimbeu CM, Malak-Polaczyk A, Frackowiak E, Vix-Guterl C, J. Appl. Electrochem., 44(1), 123 (2014)
Chen H, He J, Zhang C, He H, J. Phys. Chem. C, 111, 18033 (2007)
Jin M, Park JN, Shon JK, Li Z, Lee E, Kim JM, J. Porous Mat., 20, 989 (2013)
Wang YT, Lu AH, Zhang HL, Li WC, J. Phys. Chem. C., 115, 5413 (2011)
Yan W, Ayvazian T, Kim J, Liu Y, Donavan KC, Xing W, Yang Y, Hemminger J, Penner RM, ACS Nano, 5, 8275 (2011)
Lee CW, Yoon SB, Bak SM, Han J, Roh KC. Kim KB, J. Mater. Chem., 2, 3641 (2014)
Ding K, Hu B, Xie Y, An G, Tao R, Zhang H, Liu Z, J. Mater. Chem., 19, 3725 (2009)
Zhang M, Wu Y, Feng X, He X, Chen L, Zhang Y, J. Mater. Chem., 20, 5835 (2010)
Lee H, Kim S, Lee DW, Lee KY, Catal. Commun., 12, 968 (2011)
De Laat J, Gallard H, Environ. Sci. Technol., 33, 2726 (1999)
Huang CP, Huang YH, Appl. Catal. A: Gen., 346(1-2), 140 (2008)
Xia H, Lai M, Lu L, J. Mater. Chem., 20, 6896 (2010)
Soydas B, Culfaz PZ, Kalipcilar H, Culfaz A, Cryst. Res. Technol., 44, 800 (2009)
Park GO, Shon JK, Kim YH, Kim JM, J. Nanosci. Nanotechnol., 15, 2441 (2015)
Leofanti G, Padovan M, Tozzola G, Venturelli B, Catal. Today, 41(1-3), 207 (1998)
Molins RA. Food irradiation: Principles and applications, Wiley- IEEE, New York (2001).
Alfa MJ, DeGagne P, Olson N, Hizon R, Am. J. Infect. Control., 26, 469 (1998)
Berry DJ, Currier BH, Mayor MB, Collier JP, Clin. Orthop. Rel. Res, 470, 1805 (2012)
Matser AM, Krebbers B, van den Berg RW, Bartels PV, Trends Food Sci. Technol., 15, 79 (2004)
King RS, Devanathan TNC, Lin ST, Rohr WL, Swarts DF, US Patent, 5,522,897 (1995).
Landrigan PJ, Meinhardt TJ, Gordon J, Lipscomb JA, Burg JR, Mazzuckelli LF, Lewis TR, Lemen RA, Am. J. Ind. Med., 6, 103 (1984)
Holmdahl T, Lanbeck P, Wullt M, Walder MH, Infect. Control Hosp. Epidemiol., 32, 831 (2011)
Mastrangelo G, Zanibellato R, Fedeli U, Fadda E, Lange JH, Int. J. Environ. Health Res., 15, 313 (2005)
Bianchi G, Mazza F, Mussini T, Electrochim. Acta, 7, 457 (1962)
Jeong HE, Kim S, Seo MG, Lee DW, Lee KY, J. Mol. Catal. A-Chem., 420, 88 (2016)
Seo MG, Kim S, Lee DW, Jeong HE, Lee KY, Appl. Catal. A: Gen., 511, 87 (2016)
Seo MG, Kim S, Jeong HE, Lee DW, Lee KY, J. Mol. Catal. A-Chem., 413, 1 (2016)
Seo MG, Kim HJ, Han SS, Lee KY, Catal. Surv. Asia, 21, 1 (2017)
Hasan MA, Zaki MI, Pasupulety L, Kumari K, Appl. Catal. A: Gen., 181(1), 171 (1999)
Hermanek M, Zboril R, Medrik N, Pechousek J, Gregor C, J. Am. Chem. Soc., 129(35), 10929 (2007)
Kim G, Jung KY, Lee CH, Han JS, Jeong BH, Park YK, Jeon JK, Mater. Res. Bull., 82, 76 (2016)
Lee YN, Lago RM, Fierro JLG, Gonzalez J, Appl. Catal. A: Gen., 215(1-2), 245 (2001)
Gupta KC, Abdulkadir HK, Chand S, J. Mol. Catal. A-Chem., 202(1-2), 253 (2003)
Zhang K, Zhang C, Xie K, Text. Res. J., 85, 1704 (2015)
Walling C, Goosen A, J. Am. Chem. Soc., 95, 2987 (1973)
Lee DW, Lee MS, Lee JY, Kim S, Eom HJ, Moon DJ, Lee KY, Catal. Today, 210, 2 (2013)
Baek SC, Bae JW, Cheon JY, Jun KW, Lee KY, Catal. Lett., 141(2), 224 (2011)
Ryu JH, Lee KY, La H, Kim HJ, Yang JI, Jung H, J. Power Sources, 171(2), 499 (2007)
Wang T, Zhang X, Liu H, Guo Y, Zhang Y, Wang Y, Sun B, Catal. Surv. Asia, 21, 94 (2017)
Jeon SW, Lee JE, Park JK, Kim SH, Korean J. Chem. Eng., 32(2), 230 (2015)
Amini M, Korean J. Chem. Eng., 33(1), 126 (2016)
Lee YH, Kim H, Choi HS, Lee DW, Lee KY, Korean J. Chem. Eng., 32(11), 2220 (2015)
Du X, Zou G, Wang X, Catal. Surv. Asia, 19, 17 (2015)
Ghimbeu CM, Malak-Polaczyk A, Frackowiak E, Vix-Guterl C, J. Appl. Electrochem., 44(1), 123 (2014)
Chen H, He J, Zhang C, He H, J. Phys. Chem. C, 111, 18033 (2007)
Jin M, Park JN, Shon JK, Li Z, Lee E, Kim JM, J. Porous Mat., 20, 989 (2013)
Wang YT, Lu AH, Zhang HL, Li WC, J. Phys. Chem. C., 115, 5413 (2011)
Yan W, Ayvazian T, Kim J, Liu Y, Donavan KC, Xing W, Yang Y, Hemminger J, Penner RM, ACS Nano, 5, 8275 (2011)
Lee CW, Yoon SB, Bak SM, Han J, Roh KC. Kim KB, J. Mater. Chem., 2, 3641 (2014)
Ding K, Hu B, Xie Y, An G, Tao R, Zhang H, Liu Z, J. Mater. Chem., 19, 3725 (2009)
Zhang M, Wu Y, Feng X, He X, Chen L, Zhang Y, J. Mater. Chem., 20, 5835 (2010)
Lee H, Kim S, Lee DW, Lee KY, Catal. Commun., 12, 968 (2011)
De Laat J, Gallard H, Environ. Sci. Technol., 33, 2726 (1999)
Huang CP, Huang YH, Appl. Catal. A: Gen., 346(1-2), 140 (2008)
Xia H, Lai M, Lu L, J. Mater. Chem., 20, 6896 (2010)
Soydas B, Culfaz PZ, Kalipcilar H, Culfaz A, Cryst. Res. Technol., 44, 800 (2009)
Park GO, Shon JK, Kim YH, Kim JM, J. Nanosci. Nanotechnol., 15, 2441 (2015)
Leofanti G, Padovan M, Tozzola G, Venturelli B, Catal. Today, 41(1-3), 207 (1998)