ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 1, 2017
Accepted May 11, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hydrogen production from biomass: The behavior of impurities over a CO shift unit and a biodiesel scrubber used as a gas treatment stage

1Bioenergy2020+ GmbH, Wienerstraße 49 7540 Güssing, Austria 2Karlsruher Institut für Technologie, 76021 Karlsruhe, Germany 3TU Wien, Institute of Chemical Engineering, Getreidemarkt 9/166 1060 Vienna, Austria
Korean Journal of Chemical Engineering, August 2017, 34(8), 2198-2203(6), 10.1007/s11814-017-0130-1
downloadDownload PDF

Abstract

Most of the hydrogen produced is derived from fossil fuels. Bioenergy2020+ and TU Wien have been working on hydrogen production from biomass since 2009. A pilot plant for hydrogen production from lignocellulosic feedstock was installed onsite using a fluidized bed biomass gasifier in Gussing, Austria. In this work, the behavior of impurities over the gas conditioning stage was investigated. Stable CO conversion and hydration of sulfur components could be observed. Ammonia, benzene, toluene, xylene (BTX) and sulfur reduction could be measured after the biodiesel scrubber. The results show the possibility of using a commercial Fe/Cr-based CO shift catalyst in impurity-rich gas applications. In addition to hydrogen production, the gas treatment setup seems to also be a promising method for adjusting the H2 to CO ratio for synthesis gas applications.

References

European Commission, Energy 2020, A strategy for competitive, sustainable secure energy, Brussels (2010).
Brau JF, Morandin M, Int. J. Hydrog. Energy, 39(6), 2531 (2014)
Farniae M, Abbasi M, Rasoolzadeh A, Rahimpour MR, J. Nat. Gas Sci. Eng., 14, 158 (2013)
Rauch R, Kiennemann A, Sauciuc A, Amsterdam (2010).
Li TZ, Wang HL, Yang Y, Xiang HW, Li YW, Fuel Process. Technol., 118, 117 (2014)
Shao S, Shi AW, Liu CL, Yang RZ, Dong WS, Fuel Process. Technol., 125, 1 (2014)
Fail S, Diaz N, Benedikt F, Kraussler M, Hinteregger J, Bosch K, Hackel M, Rauch R, Hofbauer H, ACS Sustainable Chem. Eng., 2, 2690 (2014)
Liu K, Song C, Subramani V, John Wiley & Sons, New York (2009).
IEA, Hydrogen Production and Distribution, Paris (2007).
Muller S, Stidl M, Proll T, Rauch R, Hofbauer H, Biomass Convers. Biorefin., 1, 55 (2011)
Chianese S, Loipersbock J, Malits M, Rauch R, Hofbauer H, Molino A, Musmarra D, Fuel Process. Technol., 139, 39 (2015)
Proll T, Siefert IG, Friedl A, Hofbauer H, Ind. Eng. Chem. Res., 44(5), 1576 (2005)
Zech K, Grasemann E, Oehmichen K, Kiendl I, Schmersahl R, Ronsch S, Seiffert M, Muller-Langer F, Weindorf W, Funke S, Michaelis J, Wietschel M, DBFZ, Leipzig (2013).
Laniecki M, Ignacik M, Catal. Today, 116(3), 400 (2006)
Klier K, Catal. Today, 15, 361 (1992)
Hakkarainen R, Salmi T, Keiski RL, Appl. Catal. A: Gen., 99, 195 (1993)
Ratnasamy C, Wagner JP, Catal. Rev.-Sci. Eng., 51(3), 325 (2009)
Hulteberg C, Int. J. Hydrog. Energy, 37(5), 3978 (2012)
Nordenkampf MB, Rauch R, Bosch K, Aichernig C, Hofbauer H, Phuket (2002).
Sauciuc A, Abosteif Z, Weber G, Potetz A, Rauch R, Hofbauer H, Schaub G, Dumitrescu L, Biomass Convers. Biorefin., 2, 253 (2012)
Kraussler M, Binder M, Hofbauer H, Int. J. Hydrog. Energy, 41, 6171 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로