Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 13, 2016
Accepted April 10, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Extraction of microbial transglutaminase from Amycolatopsis sp. fermentation broth using aqueous two-phase system
Nan Shi1 2
Hongwei Xu1
Kaiyuan Guo1
Chunyu Kang1
Wei Zhang1
Yingying Zhang1
Liping Zhang2†
Jianxin Tan1†
1College of Food Science and Technology, Engineering Technology Center for Agricultural Products Processing of Hebei Province, Agricultural University of Hebei, Baoding 071001, China 2Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
zhlping@163.com
Korean Journal of Chemical Engineering, August 2017, 34(8), 2248-2254(7), 10.1007/s11814-017-0105-2
Download PDF
Abstract
Partitioning of microbial transglutaminase (MTG) from Amycolatopsis sp. in the polyethylene glycol (PEG)/salt-based ATPS was investigated for the first time. The key parameters such as the molecular weight of PEG (PEG 600-6000), the type and concentration of phase-forming salt (ammonium sulfate or phosphates), the pH of system (pH 5.0-8.5), and the concentration of neutral salt (0-6% NaCl, w/w) were determined. The partition coefficient of the enzyme was not linear with PEG molecular weight; PEG1000 gave better yield than others. The concentration of PEG1000, ammonium sulfate and NaCl, and the system pH showed effects with different extents on specific activity (SA) and yield of the enzyme. In the ATPS of 26% w/w PEG 1000 and 19% w/w ammonium sulfate in the presence of 5% w/w NaCl and at pH 6.0, MTG was partitioned into the PEG-rich phase with a maximum yield of 86.51% and SA was increased to 0.83. The results of SDS-PAGE showed the MTG produced by the test strain differed from the enzymes reported before. Thus, this study proves that ATPS can be used as a preliminary step for partial purification of MTG from Amycolatopsis sp. fermentation broth.
References
Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M, Agric. Biol. Chem, 53, 2613 (1989)
Nonaka M, Tanaka H, Okiyama A, Motoki M, Ando H, Umeda K, Matsuura A, Agric. Biol. Chem., 53, 2619 (1989)
Zhu Y, Rinzema A, Bonarius HPJ, Tramper J, Bol J, Enzyme Microb. Technol., 23(3-4), 216 (1998)
Wang Z, Wang ZW, Mo Y, China Biotechnol., 23, 1 (2003)
Gaspar ALC, Goes-Favoni SP, Food Chem., 171, 315 (2015)
Rachel NM, Pelletier JN, Biomolecules, 3, 870 (2013)
Duran R, Junqua M, Schmitter JM, Gancet C, Goulas P, Biochimie, 80, 313 (1998)
Volken de Souza CF, Guimaraes Venzke J, Flores SH, Zachia Ayub MA, LWT-Food Sci. Technol., 44, 443 (2011)
Lin YS, Chao ML, Liu CH, Tseng M, Chu WS, Process Biochem., 41(3), 519 (2006)
Cui L, Zhang DX, Huang L, Liu H, Du GC, Chen J, Process Biochem., 41(6), 1427 (2006)
Bourneow C, Benjakul S, Sumpavapol P, Kittikun AH, Innov. Rom. Food Biotechnol., 10, 28 (2012)
Umezawa Y, Ohtsuka T, Yokoyama K, Nio N, Food Sci. Technol Res., 8, 113 (2002)
Chen GJ, Zhang CH, Liu CJ, Sci. Technol. Food Ind., 28, 60 (2007)
Cui L, Du GC, Zhang DX, Liu H, Chen J, Food Chem., 105, 612 (2007)
Zhang LL, Zhang LW, Du M, Han X, Yi HX, Zhang YC, Zhang YH, Ma W, Chin. J. Anal. Chem., 40, 1225 (2012)
Rickert M, Strop P, Lui V, Melton-Witt J, Farias SE, Foletti D, Shelton D, Pons J, Rajpal A, Protein Sci., 25, 442 (2016)
Ding ZY, Li SP, Cao XJ, Appl. Biochem. Biotechnol., 177(1), 253 (2015)
Li SP, Ding ZY, Cao XJ, Springer Plus, 5, 37 (2016)
Ramesh V, Murty VR, Bioresour. Bioprocess., 2, 25 (2015)
Mehrnoush A, Sarker MDZI, Mustafa S, Yazid AMM, Molecules, 16, 8419 (2011)
Sarangi BK, Pattanaik DP, Rathinaraj K, Sachindra NM, Madhusudan MC, Mahendrakar NS, J. Food Sci., 48, 36 (2011)
Zhao L, Peng YL, Gao JM, Cai WM, Eur. Food Res. Technol., 238, 451 (2014)
Nagaraja VH, Iyyaswami R, J. Food Sci. Technol., 52, 3539 (2015)
Lv HC, Tian DY, Korean J. Chem. Eng., 34(1), 170 (2017)
Murata T, Aniaruine S, Hattori T, Tokuyama S, Tokuyasu K, Kawagishi H, Usui T, Biochem. Biophys. Res. Commun., 336(2), 514 (2005)
Galaev IY, Mattiasson B, Enzyme Microb. Technol., 15, 354 (1993)
Li X, Lian Z, Dong B, Xu Y, Yong Q, Yu S, Korean J. Chem. Eng., 28(9), 1897 (2011)
Grossowicz N, Wainfan E, Borek E, Waelsch H, J. Biol. Chem., 187, 111 (1950)
Huang LR, He DL, Liu MF, J. Huazhong Agr. Univ., 24, 369 (2005)
Bradford, MM, Anal. Biochem., 72, 248 (976)
Laemmli UK, Nature, 227, 680 (1970)
Asenjo JA, Turner ER, Mistry SL, Kaul A, J. Chromatogr. A, 668, 129 (1994)
Chang WJ, Koo YM, Biotechnol. Tech., 12, 455 (1998)
Xu Y, He GQ, Li JJ, J. Zhejiang Univ. Sci, 6B, 1087 (2005)
Porto TS, Monteiro TIR, Moreira KA, Lima-Filho JL, Silva MPC, Porto ALF, Carneiro-da-Cunha MG, World J. Microb. Biotechnol., 21, 655 (2005)
Guo JL, Luo FY, Huang R, Gong DC, Sci. Technol. Food Ind, 35, 172 (2014)
Kavakcioglu B, Tarhan L, Sep. Purif. Technol., 105, 8 (2013)
Nonaka M, Tanaka H, Okiyama A, Motoki M, Ando H, Umeda K, Matsuura A, Agric. Biol. Chem., 53, 2619 (1989)
Zhu Y, Rinzema A, Bonarius HPJ, Tramper J, Bol J, Enzyme Microb. Technol., 23(3-4), 216 (1998)
Wang Z, Wang ZW, Mo Y, China Biotechnol., 23, 1 (2003)
Gaspar ALC, Goes-Favoni SP, Food Chem., 171, 315 (2015)
Rachel NM, Pelletier JN, Biomolecules, 3, 870 (2013)
Duran R, Junqua M, Schmitter JM, Gancet C, Goulas P, Biochimie, 80, 313 (1998)
Volken de Souza CF, Guimaraes Venzke J, Flores SH, Zachia Ayub MA, LWT-Food Sci. Technol., 44, 443 (2011)
Lin YS, Chao ML, Liu CH, Tseng M, Chu WS, Process Biochem., 41(3), 519 (2006)
Cui L, Zhang DX, Huang L, Liu H, Du GC, Chen J, Process Biochem., 41(6), 1427 (2006)
Bourneow C, Benjakul S, Sumpavapol P, Kittikun AH, Innov. Rom. Food Biotechnol., 10, 28 (2012)
Umezawa Y, Ohtsuka T, Yokoyama K, Nio N, Food Sci. Technol Res., 8, 113 (2002)
Chen GJ, Zhang CH, Liu CJ, Sci. Technol. Food Ind., 28, 60 (2007)
Cui L, Du GC, Zhang DX, Liu H, Chen J, Food Chem., 105, 612 (2007)
Zhang LL, Zhang LW, Du M, Han X, Yi HX, Zhang YC, Zhang YH, Ma W, Chin. J. Anal. Chem., 40, 1225 (2012)
Rickert M, Strop P, Lui V, Melton-Witt J, Farias SE, Foletti D, Shelton D, Pons J, Rajpal A, Protein Sci., 25, 442 (2016)
Ding ZY, Li SP, Cao XJ, Appl. Biochem. Biotechnol., 177(1), 253 (2015)
Li SP, Ding ZY, Cao XJ, Springer Plus, 5, 37 (2016)
Ramesh V, Murty VR, Bioresour. Bioprocess., 2, 25 (2015)
Mehrnoush A, Sarker MDZI, Mustafa S, Yazid AMM, Molecules, 16, 8419 (2011)
Sarangi BK, Pattanaik DP, Rathinaraj K, Sachindra NM, Madhusudan MC, Mahendrakar NS, J. Food Sci., 48, 36 (2011)
Zhao L, Peng YL, Gao JM, Cai WM, Eur. Food Res. Technol., 238, 451 (2014)
Nagaraja VH, Iyyaswami R, J. Food Sci. Technol., 52, 3539 (2015)
Lv HC, Tian DY, Korean J. Chem. Eng., 34(1), 170 (2017)
Murata T, Aniaruine S, Hattori T, Tokuyama S, Tokuyasu K, Kawagishi H, Usui T, Biochem. Biophys. Res. Commun., 336(2), 514 (2005)
Galaev IY, Mattiasson B, Enzyme Microb. Technol., 15, 354 (1993)
Li X, Lian Z, Dong B, Xu Y, Yong Q, Yu S, Korean J. Chem. Eng., 28(9), 1897 (2011)
Grossowicz N, Wainfan E, Borek E, Waelsch H, J. Biol. Chem., 187, 111 (1950)
Huang LR, He DL, Liu MF, J. Huazhong Agr. Univ., 24, 369 (2005)
Bradford, MM, Anal. Biochem., 72, 248 (976)
Laemmli UK, Nature, 227, 680 (1970)
Asenjo JA, Turner ER, Mistry SL, Kaul A, J. Chromatogr. A, 668, 129 (1994)
Chang WJ, Koo YM, Biotechnol. Tech., 12, 455 (1998)
Xu Y, He GQ, Li JJ, J. Zhejiang Univ. Sci, 6B, 1087 (2005)
Porto TS, Monteiro TIR, Moreira KA, Lima-Filho JL, Silva MPC, Porto ALF, Carneiro-da-Cunha MG, World J. Microb. Biotechnol., 21, 655 (2005)
Guo JL, Luo FY, Huang R, Gong DC, Sci. Technol. Food Ind, 35, 172 (2014)
Kavakcioglu B, Tarhan L, Sep. Purif. Technol., 105, 8 (2013)