Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 8, 2016
Accepted December 23, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effects of process parameters on EPA and DHA concentrate production from Atlantic salmon by-product oil: Optimization and characterization
Monjurul Haq
Adane Tilahun Getachew
Periaswamy Sivagnanam Saravana
Yeon-Jin Cho
Seul-Ki Park1
Min-Jung Kim1
Byung-Soo Chun†
Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea 1Seawell Co., Ltd., Byeoksan e-Centum Classone, 508-1, Centumdong-ro, Haeundae-gu, Busan 48513, Korea
bschun@pknu.ac.kr
Korean Journal of Chemical Engineering, August 2017, 34(8), 2255-2264(10), 10.1007/s11814-016-0362-5
Download PDF
Abstract
Supercritical carbon dioxide (SC-CO2) extracted Atlantic salmon frame bone oil (SFBO) was used for Eicosapentaenoic acid and Docosahexaenoic acid (EPA-DHA) concentrate production by urea complexation. Urea/ fatty acids (2.5 to 4.0 w/w), crystallization temperature (-24 to -8°C) and crystallization time (8 to 24 h) were studied by Box-Behnken Design (BBD) to maximize EPA-DHA content. Highest EPA-DHA content was 60.63% at urea/fatty acids 4.0 w/w, crystallization temperature -15.67 °C and crystallization time 8 h. EPA-DHA concentrate showed improvement of EPA-DHA from 6.39% in SFBO to 62.34%, increase of astaxanthin content from 21.33 μg/g in SFBO to 44.69 μg/g in EPA-DHA concentrate, no residual urea and reduction of many off-flavor compounds. The EPA-DHA yield showed an inverse relation with the urea/fatty acids, whereas its concentration increased proportionally with urea/ fatty acids. Therefore, EPA-DHA concentrate produced from SFBO by urea complexation may be an efficient technique to provide ω-3 polyunsaturated fatty acids to the consumers.
Keywords
References
Liaset B, Nortvedt R, Lied E, Espe M, Process Biochem., 37(11), 1263 (2002)
Deepika D, Vegneshwaran VR, Julia P, Sukhinder KC, Sheila T, Heather M, Wade M, J. Food Process Technol., 5, 1 (2014)
Siriwardhana N, Kalupahana NS, Moustaid MN, Adv. Food Nutr. Res., 65, 211 (2012)
Ruxton CHS, Reed SC, Simpson MJA, Millington K, J. Hum. Nutr. Dietet., 17, 449 (2004)
Haagsma N, Gent CM, Luten JB, Jong RW, Doorn E, J. Am. Oil Chem. Soc., 59, 117 (1982)
Gamez MN, Noriega RJA, Medina JLA, Ortega GJ, Monroy RJ, Toro VFJ, Garcia HS, Angulo O, Food Res. Int., 36, 721 (2003)
Ratnayake WMN, Olsson B, Matthews D, Ackman RG, Fat Sci. Technol., 90, 381 (1988)
Senanayake SPJN, Shahidi F, J. Food Lipids, 7, 51 (2000)
Anon, Fish oil production and potentials, In Atlantic Canada’s Project Report. No. 115, Fisheries Development Branch, Halifax, NS, Canada (1986).
Singh AK, Mukhopadhyay M, Korean J. Chem. Eng., 33(4), 1247 (2016)
Rubio-Rodriguez N, de Diego SM, Beltran S, Jaime I, Sanz MT, Rovira J, J. Supercrit. Fluids, 47(2), 215 (2008)
Wanasundara UN, Shahidi F, Food Chem., 65, 41 (1999)
Bas D, Boyaci IH, J. Food Eng., 78(3), 836 (2007)
Gan CY, Latiff AA, Food Chem., 124, 1277 (2011)
Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA, Talanta, 76, 965 (2008)
Mason RL, Gunst RF, Hess JL, Wiley, New York, U.S.A. (1989).
Derringer G, J. Qual. Technol., 12, 214 (1980)
AOCS Official Method Ce 1-62. AOCS Press, Champaign, Illinois, U.S.A. (2006).
Ali-Nehari A, Kim SB, Lee YB, Lee H, Chun BS, Korean J. Chem. Eng., 29(3), 329 (2012)
Ramesh KB, Khushboo KG, Valecha P, Shradda PK, Sushma M, Int. J. Eng. Res. Gen. Sci., 3, 809 (2015)
Lee MK, Uddin MS, Chun BS, J. Envrion. Biol., 29, 591 (2008)
Ghosh PK, Bhattacharjee P, Korean J. Chem. Eng., 33(5), 1681 (2016)
Liu SC, Zhang CH, Hong PZ, Ji HW, J. Food Eng., 73(3), 203 (2006)
Chin YF, Salimon J, Said M, Sains Malays., 39, 795 (2010)
Myers RH, Montgomery DC, Anderson-Cook CM, Wiley (2009).
Swern D, New York, U.S.A. (1964).
Schlenk H, pp. 243-267, Pergamon Press, London, UK (1954).
Medina RA, Gimnez A, Camacho GF, Perez SJA, Grima ME, Gomez CA, J. Am. Oil Chem. Soc., 72, 575 (1995)
Rodriguez A, Esteban L, Martin L, Jimenez MJ, Hita E, Castillo B, Gonzalez PA, Robles A, Enzyme Microb. Technol., 51(3), 148 (2012)
Esteban L, Munio MM, Robles A, Hita E, Jimenez MJ, Gonzalez PA, Camacho B, Molina E, Biochem. Eng. J., 44, 271 (2009)
Suriani NW, Lawalata HJ, Komansilan A, Int. J. Pharm. Technol. Res., 6, 1981 (2014)
Lee YR, Baokun T, Kyung HR, Asian J. Chem., 26, 4543 (2014)
Zhou J, Bi W, Row KH, J. Food Sci., 76, 441 (2011)
Fassett RG, Coombes JS, Molecules, 17, 2030 (2012)
Hsleh TCY, Williams SS, Vejaphan W, Meyers SP, J. Am. Oil Chem. Soc., 66, 112 (1989)
Mathews RF, Scanlon RA, Libbey LM, J. Am. Oil Chem. Soc., 48, 745 (1971)
Hu SP, Pan BS, J. Am. Oil Chem. Soc., 77, 41 (2000)
Deepika D, Vegneshwaran VR, Julia P, Sukhinder KC, Sheila T, Heather M, Wade M, J. Food Process Technol., 5, 1 (2014)
Siriwardhana N, Kalupahana NS, Moustaid MN, Adv. Food Nutr. Res., 65, 211 (2012)
Ruxton CHS, Reed SC, Simpson MJA, Millington K, J. Hum. Nutr. Dietet., 17, 449 (2004)
Haagsma N, Gent CM, Luten JB, Jong RW, Doorn E, J. Am. Oil Chem. Soc., 59, 117 (1982)
Gamez MN, Noriega RJA, Medina JLA, Ortega GJ, Monroy RJ, Toro VFJ, Garcia HS, Angulo O, Food Res. Int., 36, 721 (2003)
Ratnayake WMN, Olsson B, Matthews D, Ackman RG, Fat Sci. Technol., 90, 381 (1988)
Senanayake SPJN, Shahidi F, J. Food Lipids, 7, 51 (2000)
Anon, Fish oil production and potentials, In Atlantic Canada’s Project Report. No. 115, Fisheries Development Branch, Halifax, NS, Canada (1986).
Singh AK, Mukhopadhyay M, Korean J. Chem. Eng., 33(4), 1247 (2016)
Rubio-Rodriguez N, de Diego SM, Beltran S, Jaime I, Sanz MT, Rovira J, J. Supercrit. Fluids, 47(2), 215 (2008)
Wanasundara UN, Shahidi F, Food Chem., 65, 41 (1999)
Bas D, Boyaci IH, J. Food Eng., 78(3), 836 (2007)
Gan CY, Latiff AA, Food Chem., 124, 1277 (2011)
Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA, Talanta, 76, 965 (2008)
Mason RL, Gunst RF, Hess JL, Wiley, New York, U.S.A. (1989).
Derringer G, J. Qual. Technol., 12, 214 (1980)
AOCS Official Method Ce 1-62. AOCS Press, Champaign, Illinois, U.S.A. (2006).
Ali-Nehari A, Kim SB, Lee YB, Lee H, Chun BS, Korean J. Chem. Eng., 29(3), 329 (2012)
Ramesh KB, Khushboo KG, Valecha P, Shradda PK, Sushma M, Int. J. Eng. Res. Gen. Sci., 3, 809 (2015)
Lee MK, Uddin MS, Chun BS, J. Envrion. Biol., 29, 591 (2008)
Ghosh PK, Bhattacharjee P, Korean J. Chem. Eng., 33(5), 1681 (2016)
Liu SC, Zhang CH, Hong PZ, Ji HW, J. Food Eng., 73(3), 203 (2006)
Chin YF, Salimon J, Said M, Sains Malays., 39, 795 (2010)
Myers RH, Montgomery DC, Anderson-Cook CM, Wiley (2009).
Swern D, New York, U.S.A. (1964).
Schlenk H, pp. 243-267, Pergamon Press, London, UK (1954).
Medina RA, Gimnez A, Camacho GF, Perez SJA, Grima ME, Gomez CA, J. Am. Oil Chem. Soc., 72, 575 (1995)
Rodriguez A, Esteban L, Martin L, Jimenez MJ, Hita E, Castillo B, Gonzalez PA, Robles A, Enzyme Microb. Technol., 51(3), 148 (2012)
Esteban L, Munio MM, Robles A, Hita E, Jimenez MJ, Gonzalez PA, Camacho B, Molina E, Biochem. Eng. J., 44, 271 (2009)
Suriani NW, Lawalata HJ, Komansilan A, Int. J. Pharm. Technol. Res., 6, 1981 (2014)
Lee YR, Baokun T, Kyung HR, Asian J. Chem., 26, 4543 (2014)
Zhou J, Bi W, Row KH, J. Food Sci., 76, 441 (2011)
Fassett RG, Coombes JS, Molecules, 17, 2030 (2012)
Hsleh TCY, Williams SS, Vejaphan W, Meyers SP, J. Am. Oil Chem. Soc., 66, 112 (1989)
Mathews RF, Scanlon RA, Libbey LM, J. Am. Oil Chem. Soc., 48, 745 (1971)
Hu SP, Pan BS, J. Am. Oil Chem. Soc., 77, 41 (2000)