Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 19, 2015
Accepted May 31, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Experimental study on ZnO-TiO2 sorbents for the removal of elemental mercury
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
zhoujs@zju.edu.cn
Korean Journal of Chemical Engineering, September 2017, 34(9), 2383-2389(7), 10.1007/s11814-017-0154-6
Download PDF
Abstract
ZnO-TiO2 sorbents synthesized by an impregnation method were characterized through XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy) and EDS (Energy dispersive spectrometer) analyses. An experiment concerning the adsorption of Hg0 by ZnO-TiO2 under a simulated fuel gas atmosphere was then conducted in a benchscale fixed-bed reactor. The effects of ZnO loading amounts and reaction temperatures on Hg0 removal performance were analyzed. The results showed that ZnO-TiO2 sorbents exhibited excellent Hg0 removal capacity in the presence of H2S at 150 °C and 200 °C; 95.2% and 91.2% of Hg0 was removed, respectively, under the experimental conditions. There are two possible causes for the H2S reacting on the surface of ZnO-TiO2: (1) H2S directly reacted with ZnO to form ZnS, (2) H2S was oxidized to elemental sulfur (Sad) by means of active oxygen on the sorbent surface, and then Sad provided active absorption sites for Hg0 to form HgS. This study identifies three reasons why higher temperatures limit mercury removal. First, the reaction between Hg0 and H2S is inhibited at high temperatures. Second, HgS, as the resulting product in the reaction of mercury removal, becomes unstable at high temperatures. Third, the desulfurization reaction strengthens at higher temperatures, and it is likely that H2S directly reacts with ZnO, thus decreasing the Sad on the sorbent surfaces.
Keywords
References
BP p.l. c. Statistical Review of World Energy 2013[R] (2013).
Longwell JP, Rubin ES, Wilson J, Prog. Energy Combust. Sci., 21(4), 269 (1995)
Gary JS, Russell CM, Fuel Process. Technol., 71(1-3), 79 (2001)
Hu CX, Zhou JS, He S, Luo ZY, Cen KF, Thermal Power Generation, 39, 1 (2010)
UNEP. Report of the global mercury assessment working group on the work of its first meeting[R]. Geneva: UNEP (2002).
UNEP. Global Mercury Assessment 2013: Sources, Emissions, Releases, and Environmental Transport[R]. Geneva: UNEP (2013).
Sasmaz E, Wilcox J, J. Phys. Chem., 112, 16484 (2008)
Jiang JK, Hao JM, Wu Y, David GS, Daun L, Tian HZ, Environ. Sci., 26, 34 (2005)
Duan YF, Liu L, Wang HJ, Yin JJ, Zhao CS, J. Taiyuan University of Technol., 41, 619 (2010)
Licata A, Fey W, Advanced technology to control mercury emissions[C] EPA-DOEEPRI MEGA Symposium, Arlington Heights (2001).
Lu DY, Granatstein DL, Rose DJ, Ind. Eng. Chem. Res., 43(17), 5400 (2004)
Wilcox J, Carbon Capture[M], Springer (2012).
Pavlish JH, Hamre LL, Zhuang Y, Fuel, 89(4), 838 (2010)
Stiegel GJ, Maxwell RC, Fuel Process. Technol., 71(1-3), 79 (2001)
Zhang H, Zhao JT, Fang YT, Huang JJ, Wang Y, Energy Fuels, 26(3), 1629 (2012)
Liu QC, Gao W, Lu CF, Dong LY, Gas&Heat, 29, 6 (2009).
Negreira AS, Wilcox J, Energy Fuels, 29, 369 (2014)
Pavlish JH, Sondreal EA, Mann MD, Olson ES, Galbreath KC, Laudal DL, Benson SA, Fuel Process. Technol., 82(2-3), 89 (2003)
Granite EJ, Myers CR, King WP, Stanko DC, Pennline HW, Ind. Eng. Chem. Res., 45(13), 4844 (2006)
Aboud S, Sasmaz E, Wilcox J, Main Group Chemistry, 7, 205 (2008)
Sasmaz E, Aboud S, Wilcox J, J. Phys. Chem., 113, 7813 (2009)
Aeschliman DB, Norton GA, Environ. Sci. Technol., 33, 2278 (1999)
Couling DJ, Nguyen HV, Green WH, Fuel, 97, 783 (2012)
Hou WH, Zhou JS, Zhang Y, Gao X, Luo ZY, Cen K, Proceedings of the CSEE, 33, 92 (2013)
Xie J, Yan N, Yang S, Qu Z, Chen W, Zhang W, Li K, Liu P, Jia J, Res. Chem. Intermed., 38, 2511 (2012)
He J, Reddy GK, Thiel SW, Smirniotis PG, Pinto NG, J. Phys. Chem., 115, 24300 (2011)
Reddy GK, He J, Thiel SW, Pinto NG, Smirniotis PG, J. Phys. Chem., 119, 8634 (2015)
Wu SJ, Uddin MA, Sasaoka E, Fuel, 85(2), 213 (2006)
Zhou JS, Pan Q, Hou WH, You SI, Gao X, Luo ZY, J. Fuel Chem. Technol., 41, 1371 (2013)
Ozaki M, Uddin MA, Sasaoka E, Wu SJ, Fuel, 87(17-18), 3610 (2008)
Wu S, Uddin MDA, Nagano S, Ozaki M, Sasaoka E, Energy Fuels, 25, 144 (2010)
Liu W, Vidic RD, Brown TD, Environ. Sci. Technol., 34, 154 (1999)
He S, Zhou JS, Zhu YQ, Luo ZY, Ni MJ, Cen KF, Energy Fuels, 23(1), 253 (2009)
Longwell JP, Rubin ES, Wilson J, Prog. Energy Combust. Sci., 21(4), 269 (1995)
Gary JS, Russell CM, Fuel Process. Technol., 71(1-3), 79 (2001)
Hu CX, Zhou JS, He S, Luo ZY, Cen KF, Thermal Power Generation, 39, 1 (2010)
UNEP. Report of the global mercury assessment working group on the work of its first meeting[R]. Geneva: UNEP (2002).
UNEP. Global Mercury Assessment 2013: Sources, Emissions, Releases, and Environmental Transport[R]. Geneva: UNEP (2013).
Sasmaz E, Wilcox J, J. Phys. Chem., 112, 16484 (2008)
Jiang JK, Hao JM, Wu Y, David GS, Daun L, Tian HZ, Environ. Sci., 26, 34 (2005)
Duan YF, Liu L, Wang HJ, Yin JJ, Zhao CS, J. Taiyuan University of Technol., 41, 619 (2010)
Licata A, Fey W, Advanced technology to control mercury emissions[C] EPA-DOEEPRI MEGA Symposium, Arlington Heights (2001).
Lu DY, Granatstein DL, Rose DJ, Ind. Eng. Chem. Res., 43(17), 5400 (2004)
Wilcox J, Carbon Capture[M], Springer (2012).
Pavlish JH, Hamre LL, Zhuang Y, Fuel, 89(4), 838 (2010)
Stiegel GJ, Maxwell RC, Fuel Process. Technol., 71(1-3), 79 (2001)
Zhang H, Zhao JT, Fang YT, Huang JJ, Wang Y, Energy Fuels, 26(3), 1629 (2012)
Liu QC, Gao W, Lu CF, Dong LY, Gas&Heat, 29, 6 (2009).
Negreira AS, Wilcox J, Energy Fuels, 29, 369 (2014)
Pavlish JH, Sondreal EA, Mann MD, Olson ES, Galbreath KC, Laudal DL, Benson SA, Fuel Process. Technol., 82(2-3), 89 (2003)
Granite EJ, Myers CR, King WP, Stanko DC, Pennline HW, Ind. Eng. Chem. Res., 45(13), 4844 (2006)
Aboud S, Sasmaz E, Wilcox J, Main Group Chemistry, 7, 205 (2008)
Sasmaz E, Aboud S, Wilcox J, J. Phys. Chem., 113, 7813 (2009)
Aeschliman DB, Norton GA, Environ. Sci. Technol., 33, 2278 (1999)
Couling DJ, Nguyen HV, Green WH, Fuel, 97, 783 (2012)
Hou WH, Zhou JS, Zhang Y, Gao X, Luo ZY, Cen K, Proceedings of the CSEE, 33, 92 (2013)
Xie J, Yan N, Yang S, Qu Z, Chen W, Zhang W, Li K, Liu P, Jia J, Res. Chem. Intermed., 38, 2511 (2012)
He J, Reddy GK, Thiel SW, Smirniotis PG, Pinto NG, J. Phys. Chem., 115, 24300 (2011)
Reddy GK, He J, Thiel SW, Pinto NG, Smirniotis PG, J. Phys. Chem., 119, 8634 (2015)
Wu SJ, Uddin MA, Sasaoka E, Fuel, 85(2), 213 (2006)
Zhou JS, Pan Q, Hou WH, You SI, Gao X, Luo ZY, J. Fuel Chem. Technol., 41, 1371 (2013)
Ozaki M, Uddin MA, Sasaoka E, Wu SJ, Fuel, 87(17-18), 3610 (2008)
Wu S, Uddin MDA, Nagano S, Ozaki M, Sasaoka E, Energy Fuels, 25, 144 (2010)
Liu W, Vidic RD, Brown TD, Environ. Sci. Technol., 34, 154 (1999)
He S, Zhou JS, Zhu YQ, Luo ZY, Ni MJ, Cen KF, Energy Fuels, 23(1), 253 (2009)