Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 15, 2017
Accepted May 24, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Kinetic and thermodynamic characteristics of crystallization of vancomycin
Department of Chemical Engineering, Kongju National University, Cheonan 31080, Korea
Korean Journal of Chemical Engineering, September 2017, 34(9), 2451-2458(8), 10.1007/s11814-017-0147-5
Download PDF
Abstract
We investigated the effect of the major process parameters (crystallization temperature and time) on the efficiency of the vancomycin crystallization process and conducted a kinetic and thermodynamic analysis. The most clear and uniform vancomycin crystals with the highest yield (~98%) were obtained at the optimum crystallization temperature (283 K) and time (1,440 min). The electron microscope, SEM, and XRD analyses showed that intact crystalline vancomycin was obtained when using a crystallization temperature of 283, 288, and 293 K. The kinetic analysis results revealed that the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model was suitable with a high value for r2 (>0.9561) and low value for RMSD (<0.0170). Finally, from the thermodynamic analysis the Gibb’s free energy change (ΔG0), entropy change (ΔS0), and enthalpy change (ΔH0) were all negative, indicating that the crystallization process was spontaneous, irreversible, and exothermic.
References
Yan H, Qi D, Cheng X, Song Z, Li W, He B, J. Antibiot., 51, 750 (1998)
Griffith RS, J. Antimicrob. Chemoter., 14, 1 (1984)
Kim SI, Han CY, Jung HS, Lee JS, Ok SY, Kim SC, Korean J. Anesthesiol., 51, 727 (2006)
United States Pharmacopoeia (USP 29): Vancomycin hydrochloride, United State Pharmacopeial Convention, Inc. (2006).
Javadzadeh Y, Mohammadi A, Khoei N, Nokhodchi A, Acta Pharm., 59, 187 (2009)
Kim WS, Lee EK, Korean J. Biotechnol. Bioeng., 20, 164 (2005)
Lee JY, Lee KH, Chae HJ, Kim JH, Korean J. Chem. Eng., 27(5), 1538 (2010)
Kim YN, Lee JY, Kim JH, Process Biochem., 46(10), 2068 (2011)
Kwak EA, Kim SJ, Kim JH, Korean J. Chem. Eng., 29(11), 1487 (2012)
Kim SK, Kim JH, Korean J. Microbiol. Biotechnol., 42, 232 (2014)
Kim SJ, Kim JH, Korean J. Microbiol. Biotechnol., 42, 297 (2014)
Ha GS, Kim JH, Korean J. Chem. Eng., 32(4), 576 (2015)
Kim SJ, Kim JH, Korean J. Chem. Eng., 32(3), 465 (2015)
Vasanthakumari R, Polymer, 22, 862 (1981)
Weiping Y, Rene LG, Guy S, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 332, 41 (2002)
Chandan B, Michael JP, J. Pharm. Sci., 97, 1329 (2008)
Lee JW, Jung YT, Suh JW, Lee KS, US Patent, 7,018,814 (2006).
Kitanovic S, Milenovic D, Velijkovic VB, Biochem. Eng. J., 41, 1 (2008)
Cheung YC, Wu JY, Biochem. Eng. J., 79, 214 (2013)
Kalu PN, Waryoba DR, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 464, 68 (2007)
Kohout J, J. Mater. Sci., 43(4), 1334 (2008)
Lee HJ, Ni H, Wu DT, Ramirez AG, Appl. Phys. Lett., 87, 124102 (2005)
McHenry ME, Johnson F, Okumura H, Ohkubo T, Ramanan VRV, Laughlin DE, Scr. Mater., 48, 881 (2003)
Choi HW, Kim YH, Rim YH, Yang YS, Phys. Chem. Chem. Phys., 15, 9940 (2013)
Kostic MD, Jokovic NM, Stamenkovic OS, Rajkovic KM, Milic PS, Veljkovic VB, Ind. Crop. Prod., 52, 679 (2014)
Paunovic DD, Mitic SS, Kostic DA, Mitic MN, Stojanovic BT, Pavlovic JL, Adv. Technol., 3, 58 (2014)
Jokic S, Velic D, Bilic M, Bucic-Kojic A, Planinc M, Tomas S, Czech J. Food Sci., 28, 206 (2010)
Bucic-Kojic A, Planinic M, Tomas S, Bilic M, Velic D, J. Food Eng., 81(1), 236 (2007)
Kim JH, Kim KY, Kim D, Park HS, Lee SC, Lee SI, J. Korean Soc. Environ. Eng., 30, 207 (2008)
Kim KJ, Prospect. Ind. Chem., 4(4), 1 (2001)
Dalvi SV, Dave RN, Ind. Eng. Chem. Res., 48(16), 7581 (2009)
Rodriguez CVR, Sanchez EM, Hernandez JG, Prokhorov E, Saldana JM, Martinez GT, J. Surf. Eng. Mater. Adv. Technol., 2, 44 (2012)
Saha P, Chowdhury S, Insight into adsorption thermodynamics, Thermodynamics Prof. Mizutani Tadashi (Ed.), ISBN: 978- 953-307-544-0, InTech, Available from: http://www.intechopen. com/books/thermodynamics/insight-into-adsorption-thermodynamics (2011).
Levenspiel O, Chemical Reaction Engineering, Wiley, New York, 22 (1999).
Farzadi A, Materialwiss. Werkst., 46, 1218 (2015)
Park JN, Kim JH, Process Biochem., 53, 224 (2017)
Lee CG, Kim JH, Process Biochem., In Press (2017).
Griffith RS, J. Antimicrob. Chemoter., 14, 1 (1984)
Kim SI, Han CY, Jung HS, Lee JS, Ok SY, Kim SC, Korean J. Anesthesiol., 51, 727 (2006)
United States Pharmacopoeia (USP 29): Vancomycin hydrochloride, United State Pharmacopeial Convention, Inc. (2006).
Javadzadeh Y, Mohammadi A, Khoei N, Nokhodchi A, Acta Pharm., 59, 187 (2009)
Kim WS, Lee EK, Korean J. Biotechnol. Bioeng., 20, 164 (2005)
Lee JY, Lee KH, Chae HJ, Kim JH, Korean J. Chem. Eng., 27(5), 1538 (2010)
Kim YN, Lee JY, Kim JH, Process Biochem., 46(10), 2068 (2011)
Kwak EA, Kim SJ, Kim JH, Korean J. Chem. Eng., 29(11), 1487 (2012)
Kim SK, Kim JH, Korean J. Microbiol. Biotechnol., 42, 232 (2014)
Kim SJ, Kim JH, Korean J. Microbiol. Biotechnol., 42, 297 (2014)
Ha GS, Kim JH, Korean J. Chem. Eng., 32(4), 576 (2015)
Kim SJ, Kim JH, Korean J. Chem. Eng., 32(3), 465 (2015)
Vasanthakumari R, Polymer, 22, 862 (1981)
Weiping Y, Rene LG, Guy S, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 332, 41 (2002)
Chandan B, Michael JP, J. Pharm. Sci., 97, 1329 (2008)
Lee JW, Jung YT, Suh JW, Lee KS, US Patent, 7,018,814 (2006).
Kitanovic S, Milenovic D, Velijkovic VB, Biochem. Eng. J., 41, 1 (2008)
Cheung YC, Wu JY, Biochem. Eng. J., 79, 214 (2013)
Kalu PN, Waryoba DR, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 464, 68 (2007)
Kohout J, J. Mater. Sci., 43(4), 1334 (2008)
Lee HJ, Ni H, Wu DT, Ramirez AG, Appl. Phys. Lett., 87, 124102 (2005)
McHenry ME, Johnson F, Okumura H, Ohkubo T, Ramanan VRV, Laughlin DE, Scr. Mater., 48, 881 (2003)
Choi HW, Kim YH, Rim YH, Yang YS, Phys. Chem. Chem. Phys., 15, 9940 (2013)
Kostic MD, Jokovic NM, Stamenkovic OS, Rajkovic KM, Milic PS, Veljkovic VB, Ind. Crop. Prod., 52, 679 (2014)
Paunovic DD, Mitic SS, Kostic DA, Mitic MN, Stojanovic BT, Pavlovic JL, Adv. Technol., 3, 58 (2014)
Jokic S, Velic D, Bilic M, Bucic-Kojic A, Planinc M, Tomas S, Czech J. Food Sci., 28, 206 (2010)
Bucic-Kojic A, Planinic M, Tomas S, Bilic M, Velic D, J. Food Eng., 81(1), 236 (2007)
Kim JH, Kim KY, Kim D, Park HS, Lee SC, Lee SI, J. Korean Soc. Environ. Eng., 30, 207 (2008)
Kim KJ, Prospect. Ind. Chem., 4(4), 1 (2001)
Dalvi SV, Dave RN, Ind. Eng. Chem. Res., 48(16), 7581 (2009)
Rodriguez CVR, Sanchez EM, Hernandez JG, Prokhorov E, Saldana JM, Martinez GT, J. Surf. Eng. Mater. Adv. Technol., 2, 44 (2012)
Saha P, Chowdhury S, Insight into adsorption thermodynamics, Thermodynamics Prof. Mizutani Tadashi (Ed.), ISBN: 978- 953-307-544-0, InTech, Available from: http://www.intechopen. com/books/thermodynamics/insight-into-adsorption-thermodynamics (2011).
Levenspiel O, Chemical Reaction Engineering, Wiley, New York, 22 (1999).
Farzadi A, Materialwiss. Werkst., 46, 1218 (2015)
Park JN, Kim JH, Process Biochem., 53, 224 (2017)
Lee CG, Kim JH, Process Biochem., In Press (2017).