Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 15, 2016
Accepted May 31, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Selective deposition of Au-Pt alloy nanoparticles on ellipsoidal zirconium titanium oxides for reduction of 4-nitrophenol
Zewu Zhang1 2†
Jinghui Zhang2
Guangqing Liu3
Mengwei Xue3
Zhangzhong Wang1 2
Xiaohai Bu1 2
Qiong Wu1 2
Xuejuan Zhao1 2
1Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 21167, P. R. China 2School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 21167, P. R. China 3School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 21171, P. R. China
seuzzw06@163.com
Korean Journal of Chemical Engineering, September 2017, 34(9), 2471-2479(9), 10.1007/s11814-017-0156-4
Download PDF
Abstract
Au-Pt alloy nanoparticles that are selectively anchored on TiO2 surface of the ellipsoidal zirconium titanium composite oxides were successfully prepared by a facile two-step method: prefabricated binary composite oxides on the ellipsoidal Fe2O3@SiO2 by a versatile cooperative template-directed coating method, and then in situ formation of Au-Pt alloy NPs with Sn2+ as the reduction agent. The alloy catalysts were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The result suggested that highly dispersive and ultrafine Au-Pt alloy nanoparticles were deposited onto TiO2 surface of the binary oxides solely. The particle size of nanoalloys was closely related to the ratio of Zr : Ti in the composite oxides shell. Increasing the content of Zr element led to a growth in the size of alloy nanoparticles. When used as catalysts for the reduction of 4-nitrophenol, the prepared supported alloyed catalysts exhibited high catalytic activity, and the sample could be easily recycled without a significant decrease of the catalytic activity.
References
Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM, Acs Nano, 4, 3591 (2010)
Lin CR, Yeh CL, Lu SZ, Lyubutin IS, Wang SC, Suzdalev IP, Nanotechnology, 21, 235603 (2010)
Cargnello M, Grzelczak M, Rodriguez-Gonzalez B, Syrgiannis Z, Bakhmutsky K, La Parola V, Liz-Marzan LM, Gorte RJ, Prato M, Fornasiero P, J. Am. Chem. Soc., 134(28), 11760 (2012)
Zhuang H, Gu Q, Long J, Lin H, Lin H, Wang X, RSC Adv., 4, 34315 (2014)
Zhang Y, Zhou Y, Zhang Z, Xiang S, Sheng X, Zhou S, Wang F, Dalton Trans., 43, 1360 (2014)
Khan MM, Kalathil S, Lee J, Cho MH, Bull. Korean Chem. Soc., 33, 1753 (2012)
Delannoy L, Thrimurthulu G, Reddy PS, Methivier C, Nelayah J, Reddy BM, Ricolleau C, Louis C, Phys. Chem. Chem. Phys., 16, 26514 (2014)
Barias OA, Holmen A, Blekkan EA, J. Catal., 158(1), 1 (1996)
Zhang J, Chen G, Guay D, Chaker M, Ma D, Nanoscale, 6, 2125 (2014)
Corma A, Serna P, Science, 313, 332 (2006)
Zhao LY, Heinig N, Leung KT, Langmuir, 29(3), 927 (2013)
Liu N, Han H, Yuan Z, Ma Z, RSC Adv., 5, 1867 (2015)
Luo J, Njoki PN, Lin Y, Wang LY, Zhong CJ, Electrochem. Commun., 8, 581 (2006)
Zhao L, Thomas JP, Heinig NF, Abd-Ellah M, Wang X, Leung KT, J. Mater. Chem., 2, 2707 (2014)
Zhang J, Hou C, Huang H, Zhang L, Jiang Z, Chen G, Jia Y, Kuang Q, Xie Z, Zheng L, Small, 9, 538 (2013)
Ferrando R, Jellinek J, Johnston RL, Chem. Rev., 108(3), 845 (2008)
Zhao L, Zhang CY, Zhuo L, Zhang YG, Ying JY, J. Am. Chem. Soc., 130(38), 12586 (2008)
Chen B, Lutker K, Raju SV, Yan JY, Kanitpanyacharoen W, Lei JL, Yang SZ, Wenk HR, Mao HK, Williams Q, Science, 338(6113), 1448 (2012)
Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T, J. Phys. Chem., 111, 4596 (2007)
Chen X, Cai Z, Chen X, Oyama M, J. Mater. Chem., 2, 5668 (2014)
Sivakumar C, Phani KL, Chem. Commun., 47, 3535 (2011)
Crespilho FN, Borges TFCC, Zucolotto V, Leite ER, Nart FC, Oliveira ON, J. Nanosci. Nanotechnol., 6, 2588 (2006)
Zhang Q, Lima DQ, Lee I, Zaera F, Chi MF, Yin Y, Angew. Chem.-Int. Edit., 50, 7088 (2011)
Jung J, Kang S, Han YK, Nanoscale, 4, 4206 (2012)
Zheng J, Dong Y, Wang W, Ma Y, Hu J, Chen X, Chen X, Nanoscale, 5, 4894 (2013)
Chen C, Nan C, Wang D, Su Q, Duan H, Liu X, Zhang L, Chu D, Song W, Peng Q, Li Y, Angew. Chem.-Int. Edit., 50, 3725 (2011)
Valden M, Pak S, Lai X, Goodman DW, Catal. Lett., 56(1), 7 (1998)
Qi J, Chen J, Li G, Li S, Gao Y, Tang Z, Energy Environ. Sci., 5, 8937 (2012)
Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M, Top. Catal., 44, 199 (2007)
Chen X, Mao SS, Chem. Rev., 107, 2897 (2007)
Reddy BM, Khan A, Catal. Rev.-Sci. Eng., 47(2), 257 (2005)
Zou H, Lin YS, Appl. Catal. A: Gen., 265(1), 35 (2004)
Manriquez ME, Picquart M, Bokhimi X, Lopez T, Quintana P, Coronado JM, J. Nanosci. Nanotechnol., 8, 6623 (2008)
Liu J, Zou S, Li S, Liao X, Hong Y, Xiao L, Fan J, J. Mater. Chem., 1, 4038 (2013)
Kimling MC, Chen D, Caruso RA, J. Mater. Chem., 3, 3768 (2015)
Zhang Z, Zhou Y, Zhang Y, Zhou S, Xiang S, Sheng X, Jiang P, J. Mater. Chem., 3, 4642 (2015)
Ozaki M, Kratohvil S, Matijevic E, J. Colloid Interface Sci., 102, 146 (1984)
Yun G, Hassan Z, Lee J, Kim J, Lee NS, Kim NH, Baek K, Hwang I, Park CG, Kim K, Angew. Chem.-Int. Edit., 53, 6414 (2014)
Au L, Lu XM, Xia YN, Adv. Mater., 20(13), 2517 (2008)
Dementjev AP, de Graaf A, van de Sanden MCM, Maslakov KI, Naumkin AV, Serov AA, Diam. Relat. Mat., 9, 1904 (2000)
He YB, Li GR, Wang ZL, Ou YN, Tong YX, J. Phys. Chem., 114, 191751 (2010)
Mi Y, Wang J, Yang Z, Wang H, Wang Z, Yang S, RSC Adv., 4, 39743 (2014)
Dong ZP, Le XD, Dong CX, Zhang W, Li XL, Ma JT, Appl. Catal. B: Environ., 162, 372 (2015)
Cui XL, Zuo W, Tian M, Dong ZP, Ma JT, J. Mol. Catal. A-Chem., 423, 386 (2016)
Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y, Nanoscale, 3, 3357 (2011)
Pozun ZD, Rodenbusch SE, Keller E, Tran K, Tang WJ, Stevenson KJ, Henkelman G, J. Phys. Chem., 117, 7598 (2013)
Fan CM, Zhang LF, Wang SS, Wang DH, Lu LQ, Xu AW, Nanoscale, 4, 6835 (2012)
Ye WC, Yu J, Zhou YX, Gao DQ, Wang DA, Wang CM, Xue DS, Appl. Catal. B: Environ., 181, 371 (2016)
Tian M, Cui XL, Dong CX, Dong ZP, Appl. Surf. Sci., 390, 100 (2016)
Tang S, Vongehr S, Meng X, J. Mater. Chem., 20, 5436 (2010)
Zhang J, Chen G, Guay D, Chaker M, Ma D, Nanoscale, 6, 2125 (2014)
Zhang Z, Zhou Y, Zhang Y, Sheng X, Zhou S, Xiang S, RSC Adv., 4, 40078 (2014)
Lin CR, Yeh CL, Lu SZ, Lyubutin IS, Wang SC, Suzdalev IP, Nanotechnology, 21, 235603 (2010)
Cargnello M, Grzelczak M, Rodriguez-Gonzalez B, Syrgiannis Z, Bakhmutsky K, La Parola V, Liz-Marzan LM, Gorte RJ, Prato M, Fornasiero P, J. Am. Chem. Soc., 134(28), 11760 (2012)
Zhuang H, Gu Q, Long J, Lin H, Lin H, Wang X, RSC Adv., 4, 34315 (2014)
Zhang Y, Zhou Y, Zhang Z, Xiang S, Sheng X, Zhou S, Wang F, Dalton Trans., 43, 1360 (2014)
Khan MM, Kalathil S, Lee J, Cho MH, Bull. Korean Chem. Soc., 33, 1753 (2012)
Delannoy L, Thrimurthulu G, Reddy PS, Methivier C, Nelayah J, Reddy BM, Ricolleau C, Louis C, Phys. Chem. Chem. Phys., 16, 26514 (2014)
Barias OA, Holmen A, Blekkan EA, J. Catal., 158(1), 1 (1996)
Zhang J, Chen G, Guay D, Chaker M, Ma D, Nanoscale, 6, 2125 (2014)
Corma A, Serna P, Science, 313, 332 (2006)
Zhao LY, Heinig N, Leung KT, Langmuir, 29(3), 927 (2013)
Liu N, Han H, Yuan Z, Ma Z, RSC Adv., 5, 1867 (2015)
Luo J, Njoki PN, Lin Y, Wang LY, Zhong CJ, Electrochem. Commun., 8, 581 (2006)
Zhao L, Thomas JP, Heinig NF, Abd-Ellah M, Wang X, Leung KT, J. Mater. Chem., 2, 2707 (2014)
Zhang J, Hou C, Huang H, Zhang L, Jiang Z, Chen G, Jia Y, Kuang Q, Xie Z, Zheng L, Small, 9, 538 (2013)
Ferrando R, Jellinek J, Johnston RL, Chem. Rev., 108(3), 845 (2008)
Zhao L, Zhang CY, Zhuo L, Zhang YG, Ying JY, J. Am. Chem. Soc., 130(38), 12586 (2008)
Chen B, Lutker K, Raju SV, Yan JY, Kanitpanyacharoen W, Lei JL, Yang SZ, Wenk HR, Mao HK, Williams Q, Science, 338(6113), 1448 (2012)
Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T, J. Phys. Chem., 111, 4596 (2007)
Chen X, Cai Z, Chen X, Oyama M, J. Mater. Chem., 2, 5668 (2014)
Sivakumar C, Phani KL, Chem. Commun., 47, 3535 (2011)
Crespilho FN, Borges TFCC, Zucolotto V, Leite ER, Nart FC, Oliveira ON, J. Nanosci. Nanotechnol., 6, 2588 (2006)
Zhang Q, Lima DQ, Lee I, Zaera F, Chi MF, Yin Y, Angew. Chem.-Int. Edit., 50, 7088 (2011)
Jung J, Kang S, Han YK, Nanoscale, 4, 4206 (2012)
Zheng J, Dong Y, Wang W, Ma Y, Hu J, Chen X, Chen X, Nanoscale, 5, 4894 (2013)
Chen C, Nan C, Wang D, Su Q, Duan H, Liu X, Zhang L, Chu D, Song W, Peng Q, Li Y, Angew. Chem.-Int. Edit., 50, 3725 (2011)
Valden M, Pak S, Lai X, Goodman DW, Catal. Lett., 56(1), 7 (1998)
Qi J, Chen J, Li G, Li S, Gao Y, Tang Z, Energy Environ. Sci., 5, 8937 (2012)
Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M, Top. Catal., 44, 199 (2007)
Chen X, Mao SS, Chem. Rev., 107, 2897 (2007)
Reddy BM, Khan A, Catal. Rev.-Sci. Eng., 47(2), 257 (2005)
Zou H, Lin YS, Appl. Catal. A: Gen., 265(1), 35 (2004)
Manriquez ME, Picquart M, Bokhimi X, Lopez T, Quintana P, Coronado JM, J. Nanosci. Nanotechnol., 8, 6623 (2008)
Liu J, Zou S, Li S, Liao X, Hong Y, Xiao L, Fan J, J. Mater. Chem., 1, 4038 (2013)
Kimling MC, Chen D, Caruso RA, J. Mater. Chem., 3, 3768 (2015)
Zhang Z, Zhou Y, Zhang Y, Zhou S, Xiang S, Sheng X, Jiang P, J. Mater. Chem., 3, 4642 (2015)
Ozaki M, Kratohvil S, Matijevic E, J. Colloid Interface Sci., 102, 146 (1984)
Yun G, Hassan Z, Lee J, Kim J, Lee NS, Kim NH, Baek K, Hwang I, Park CG, Kim K, Angew. Chem.-Int. Edit., 53, 6414 (2014)
Au L, Lu XM, Xia YN, Adv. Mater., 20(13), 2517 (2008)
Dementjev AP, de Graaf A, van de Sanden MCM, Maslakov KI, Naumkin AV, Serov AA, Diam. Relat. Mat., 9, 1904 (2000)
He YB, Li GR, Wang ZL, Ou YN, Tong YX, J. Phys. Chem., 114, 191751 (2010)
Mi Y, Wang J, Yang Z, Wang H, Wang Z, Yang S, RSC Adv., 4, 39743 (2014)
Dong ZP, Le XD, Dong CX, Zhang W, Li XL, Ma JT, Appl. Catal. B: Environ., 162, 372 (2015)
Cui XL, Zuo W, Tian M, Dong ZP, Ma JT, J. Mol. Catal. A-Chem., 423, 386 (2016)
Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y, Nanoscale, 3, 3357 (2011)
Pozun ZD, Rodenbusch SE, Keller E, Tran K, Tang WJ, Stevenson KJ, Henkelman G, J. Phys. Chem., 117, 7598 (2013)
Fan CM, Zhang LF, Wang SS, Wang DH, Lu LQ, Xu AW, Nanoscale, 4, 6835 (2012)
Ye WC, Yu J, Zhou YX, Gao DQ, Wang DA, Wang CM, Xue DS, Appl. Catal. B: Environ., 181, 371 (2016)
Tian M, Cui XL, Dong CX, Dong ZP, Appl. Surf. Sci., 390, 100 (2016)
Tang S, Vongehr S, Meng X, J. Mater. Chem., 20, 5436 (2010)
Zhang J, Chen G, Guay D, Chaker M, Ma D, Nanoscale, 6, 2125 (2014)
Zhang Z, Zhou Y, Zhang Y, Sheng X, Zhou S, Xiang S, RSC Adv., 4, 40078 (2014)