Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 20, 2017
Accepted October 2, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
CO2 hydrogenation to methanol over Cu/ZnO catalysts synthesized via a facile solid-phase grinding process using oxalic acid
School of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China 1School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China 2Department of Materials, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
lvpeng0830@zust.edu.cn
Korean Journal of Chemical Engineering, January 2018, 35(1), 110-117(8), 10.1007/s11814-017-0278-8
Download PDF
Abstract
Reduced Cu/ZnO catalyst was synthesized through solid phase grinding of the mixture of oxalic acid, copper nitrate and zinc nitrate, followed by subsequent calcination in N2 atmosphere without further H2 reduction. The catalysts were characterized by various techniques, such as XRD, TG-DTA, TPR and N2O chemisorption. Characterization results suggested that during the calcination in N2, as-ground precursor (oxalate complexes) decomposed to CuO and ZnO, releasing considerable amount of CO, which could be used for in situ reduction of CuO to Cu°. The in situ reduced O/I-Cu/ZnO catalyst was evaluated in CO2 hydrogenation to methanol, which exhibited superior catalytic performance to its counterpart O/H-Cu/ZnO catalyst obtained through conventional H2 reduction. The decomposition of precursor and reduction of CuO happened simultaneously during the calcination in N2, preventing the growth of active Cu0 species and aggregation of catalyst particles, which was inevitable during conventional H2 reduction process. This method is simple and solvent-free, opening a new route to prepare metallic catalysts without further reduction.
References
Milani D, Khalilpour R, Zahedi G, Abbas A, J. CO2 Util., 10, 12 (2015)
Saeidi S, Amin N, Rahimpour M, J. CO2 Util., 5, 66 (2014)
Jiang X, Koizumi N, Guo XW, Song CS, Appl. Catal. B: Environ., 170, 173 (2015)
Liang XL, Dong X, Lin GD, Zhang HB, Appl. Catal. B: Environ., 88(3-4), 315 (2009)
Wang D, Zhao J, Song H, Chou L, J. Nat. Gas Chem., 20, 629 (2011)
Dong XS, Li F, Zhao N, Xiao FK, Wang JW, Tan YS, Appl. Catal. B: Environ., 191, 8 (2016)
Melian-Cabrera I, Granados ML, Fierro JLG, J. Catal., 210(2), 285 (2002)
Angelo L, Girleanu M, Ersen O, Serra C, Parkhomenko K, Roger AC, Catal. Today, 270, 59 (2016)
Pori M, Likozar B, Marinsek M, Orel ZC, Fuel Process. Technol., 146, 39 (2016)
Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB, Chem. Eng. Res. Des., 92(11), 2557 (2014)
Liu XM, Lu GQ, Yan ZF, Beltramini J, Ind. Eng. Chem. Res., 42(25), 6518 (2003)
Chen J, Li W, Shen R, Korean J. Chem. Eng., 33(2), 500 (2016)
Jeong Y, Kang JY, Kim I, Jeong H, Park JK, Park JH, Jung JC, Korean J. Chem. Eng., 33(1), 114 (2016)
Shi L, Zhu P, Yang R, Zhang X, Yao J, Chen F, Gao X, Ai P, Tsubaki N, Catal. Commun., 89, 1 (2017)
Guo X, Mao D, Lu G, Wang S, Wu G, Catal. Commun., 12, 1095 (2011)
Sun J, Zhang L, Ge C, Tang C, Dong L, Chinese J. Catal., 35, 1347 (2014)
Zhang Q, Zhang T, Shi Y, Zhao B, Wang M, Liu Q, Wang J, Long K, Duan Y, Ning P, J. CO2 Util., 17, 10 (2017)
Lu P, Xing C, Li HJ, Gai XK, Wei QH, Tan L, Lu CX, Shen WZ, Yang RQ, Tsubaki N, Int. J. Hydrog. Energy, 41(25), 10680 (2016)
Tang CJ, Sun BW, Sun JF, Hong X, Deng Y, Gao F, Dong L, Catal. Today, 281, 575 (2017)
Wang LC, Liu YM, Chen M, Cao Y, He HY, Wu GS, Dai WL, Fan KN, J. Catal., 246(1), 193 (2007)
Haq I, Haider F, Mater. Lett., 63, 2355 (2009)
Dollimore D, Griffiths D, J. Therm. Anal., 2, 229 (1970)
Gabal MA, Thermochim. Acta, 402(1-2), 199 (2003)
Dollimore D, Griffths D, Nicholson D, J. Chem. Soc., 488, 2617 (1963)
Yang RQ, Yu XC, Zhang Y, Li WZ, Tsubaki N, Fuel, 87(4-5), 443 (2008)
Fei JH, Hou ZY, Zhu B, Lou H, Zheng XM, Appl. Catal. A: Gen., 304(1), 49 (2006)
Lei H, Nie RF, Wu GQ, Hou ZY, Fuel, 154, 161 (2015)
Kim D, Yang C, Park Y, Kim K, Jeong S, Han J, Lee Y, Chem. Phys. Lett., 413, 135 (2015)
Szanyi J, Goodman D, Catal. Lett., 10, 383 (1991)
van Santen R, van Leeuwen P, Moulijn J, Averill B, Catalysis: An Integrated Approach, 5, 218 (1997)
Larmier K, Liao WC, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Coperet C, Angew. Chem.-Int. Edit., 56, 2318 (2017)
Chinchen G, Waugh K, Whan D, Appl. Catal., 25, 101 (1986)
Rasmussen P, Kazuta M, Chorkendorff I, Surf. Sci., 318, 267 (1994)
Rasmussen P, Holmblad P, Askgaard T, Ovesen C, Stoltze P, Nørskov J, Chorkendorff I, Catal. Lett., 3-4, 373 (1994)
Yoshihara J, Campbell C, J. Catal., 2, 776 (1996)
Yoshihara J, Parker S, Schafer A, Campbell C, Catal. Lett., 4, 313 (1995)
Fujitani T, Nakamura I, Watanabe T, Uchijima T, Nakamura J, Catal. Lett., 35(3-4), 297 (1995)
Saeidi S, Amin N, Rahimpour M, J. CO2 Util., 5, 66 (2014)
Jiang X, Koizumi N, Guo XW, Song CS, Appl. Catal. B: Environ., 170, 173 (2015)
Liang XL, Dong X, Lin GD, Zhang HB, Appl. Catal. B: Environ., 88(3-4), 315 (2009)
Wang D, Zhao J, Song H, Chou L, J. Nat. Gas Chem., 20, 629 (2011)
Dong XS, Li F, Zhao N, Xiao FK, Wang JW, Tan YS, Appl. Catal. B: Environ., 191, 8 (2016)
Melian-Cabrera I, Granados ML, Fierro JLG, J. Catal., 210(2), 285 (2002)
Angelo L, Girleanu M, Ersen O, Serra C, Parkhomenko K, Roger AC, Catal. Today, 270, 59 (2016)
Pori M, Likozar B, Marinsek M, Orel ZC, Fuel Process. Technol., 146, 39 (2016)
Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB, Chem. Eng. Res. Des., 92(11), 2557 (2014)
Liu XM, Lu GQ, Yan ZF, Beltramini J, Ind. Eng. Chem. Res., 42(25), 6518 (2003)
Chen J, Li W, Shen R, Korean J. Chem. Eng., 33(2), 500 (2016)
Jeong Y, Kang JY, Kim I, Jeong H, Park JK, Park JH, Jung JC, Korean J. Chem. Eng., 33(1), 114 (2016)
Shi L, Zhu P, Yang R, Zhang X, Yao J, Chen F, Gao X, Ai P, Tsubaki N, Catal. Commun., 89, 1 (2017)
Guo X, Mao D, Lu G, Wang S, Wu G, Catal. Commun., 12, 1095 (2011)
Sun J, Zhang L, Ge C, Tang C, Dong L, Chinese J. Catal., 35, 1347 (2014)
Zhang Q, Zhang T, Shi Y, Zhao B, Wang M, Liu Q, Wang J, Long K, Duan Y, Ning P, J. CO2 Util., 17, 10 (2017)
Lu P, Xing C, Li HJ, Gai XK, Wei QH, Tan L, Lu CX, Shen WZ, Yang RQ, Tsubaki N, Int. J. Hydrog. Energy, 41(25), 10680 (2016)
Tang CJ, Sun BW, Sun JF, Hong X, Deng Y, Gao F, Dong L, Catal. Today, 281, 575 (2017)
Wang LC, Liu YM, Chen M, Cao Y, He HY, Wu GS, Dai WL, Fan KN, J. Catal., 246(1), 193 (2007)
Haq I, Haider F, Mater. Lett., 63, 2355 (2009)
Dollimore D, Griffiths D, J. Therm. Anal., 2, 229 (1970)
Gabal MA, Thermochim. Acta, 402(1-2), 199 (2003)
Dollimore D, Griffths D, Nicholson D, J. Chem. Soc., 488, 2617 (1963)
Yang RQ, Yu XC, Zhang Y, Li WZ, Tsubaki N, Fuel, 87(4-5), 443 (2008)
Fei JH, Hou ZY, Zhu B, Lou H, Zheng XM, Appl. Catal. A: Gen., 304(1), 49 (2006)
Lei H, Nie RF, Wu GQ, Hou ZY, Fuel, 154, 161 (2015)
Kim D, Yang C, Park Y, Kim K, Jeong S, Han J, Lee Y, Chem. Phys. Lett., 413, 135 (2015)
Szanyi J, Goodman D, Catal. Lett., 10, 383 (1991)
van Santen R, van Leeuwen P, Moulijn J, Averill B, Catalysis: An Integrated Approach, 5, 218 (1997)
Larmier K, Liao WC, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Coperet C, Angew. Chem.-Int. Edit., 56, 2318 (2017)
Chinchen G, Waugh K, Whan D, Appl. Catal., 25, 101 (1986)
Rasmussen P, Kazuta M, Chorkendorff I, Surf. Sci., 318, 267 (1994)
Rasmussen P, Holmblad P, Askgaard T, Ovesen C, Stoltze P, Nørskov J, Chorkendorff I, Catal. Lett., 3-4, 373 (1994)
Yoshihara J, Campbell C, J. Catal., 2, 776 (1996)
Yoshihara J, Parker S, Schafer A, Campbell C, Catal. Lett., 4, 313 (1995)
Fujitani T, Nakamura I, Watanabe T, Uchijima T, Nakamura J, Catal. Lett., 35(3-4), 297 (1995)