ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 5, 2017
Accepted September 18, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 in a lab-scale bubble column reactor: Artificial intelligence modelling for determination of optimal operational parameters and energy requirements

Food Engineering & Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
chetanudct@gmail.com
Korean Journal of Chemical Engineering, January 2018, 35(1), 195-203(9), 10.1007/s11814-017-0253-4
downloadDownload PDF

Abstract

The operational optimization of zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 in a bubble column reactor was performed by coupling genetic algorithm (GA) to an artificial neural network (ANN) model developed using experimental one-variable-at-a-time (OVAT) results. The effects of varying air flow rate (2- 5 vvm) and inoculum size (4 and 8%) for different incubation time (30-80 h) were evaluated. Volumetric power input (P/VL) and energy input (E) to the bubble column were then correlated with the ANN-GA optimized conditions. A maximum zeaxanthin production of 13.76±0.14mg/L was observed at 4 vvm using an inoculum size of 4% (v/v) after 60h of incubation in OVAT experiments with corresponding P/VL value of 231.57 W/m3 reflecting an energy consumption of 50.02 kJ during the fermentation period. The ANN based GA optimization predicted a maximum zeaxanthin production of 14.79mg/L at 3.507 vvm, 4% inoculum size and 55.83 h against the experimental production of 15.09±0.51mg/L corresponding to a P/VL value of 202.03 W/m3 reflecting to a significantly reduced energy input (40.01 kJ). The proposed OVAT based ANN-GA optimization approach can be used to simulate similar studies involving microbial fermentation in bioreactors.

References

Ribaya-Mercado JD, Blumberg JB, J. Am. Coll. Nutr., 23, 567S (2004)
Loane E, Nolan JM, O’Donovan O, Bhosale P, Bernstein PS, Beatty S, Surv. Ophthalmol., 53, 68 (2008)
Roberts RL, Green J, Lewis B, Clin. Dermatol., 27, 195 (2009)
Moeller SM, Jacques PF, Blumberg JB, J. Am. Coll. Nutr., 19, 522S (2000)
Thawornwiriyanun P, Tanasupawat S, Dechsakulwatana C, Techkarnjanaruk S, Suntornsuk W, Appl. Biochem. Biotechnol., 167(8), 2357 (2012)
Ye VM, Bhatia SK, Biotechnol. Lett., 34(8), 1405 (2012)
Cheng YT, Yang CF, J. Taiwan Inst. Chem. Eng., 61, 270 (2016)
Berry A, Janssens D, Humbelin M, Jore JP, Hoste B, Cleenwerck I, Vancanneyt M, Bretzel W, Mayer AF, Lopez-Ulibarri R, Shanmugam B, Int. J. Syst. Evol. Microbiol., 53, 231 (2003)
Schocher AJ, Wiss O, US Patent, 3,891,504 (1975).
Doran PM, Bioprocess engineering principles, Academic Press, London (1995).
Nanou K, Roukas T, Papadakis E, Biochem. Eng. J., 54, 172 (2011)
Nanou K, Roukas T, Papadakis E, Biochem. Eng. J., 67, 203 (2012)
Stanbury PF, Whitaker A, Hall SJ, Principles of fermentation technology, Elsevier (2013).
Hao LM, Xing XH, Li Z, Zhang JC, Sun JX, Jia SR, Qiao CS, Wu TY, Appl. Biochem. Biotechnol., 160(2), 621 (2010)
Dursun D, Dalgıc AC, Biocatal. Agric. Biotechnol., 7, 1 (2016)
Eryılmaz EB, Dursun D, Dalgıc AC, Biocatal. Agric. Biotechnol., 7, 224 (2016)
Pandey KR, Joshi C, Vakil BV, SpringerPlus, 5, 1654 (2016)
Kuo CH, Liu TA, Chen JH, Chang CMJ, Shieh CJ, Biocatal. Agric. Biotechnol., 3, 1 (2014)
Babaei AA, Khataee A, Ahmadpour E, Sheydaei M, Kakavandi B, Alaee Z, Korean J. Chem. Eng., 33(4), 1352 (2016)
Singh D, Kaur G, Bioprocess. Biosyst. Eng., 37, 1599 (2014)
Zafar M, Kumar S, Dhiman AK, Biocatal. Agric. Biotechnol., 1, 70 (2012)
Prabhu AA, Mandal B, Dasu VV, Korean J. Chem. Eng., 34(4), 1109 (2017)
Kundu P, Mishra IM, Desalination Water Treat., 57, 19713 (2016)
Huang SM, Kuo CH, Chen CA, Liu YC, Shieh CJ, Ultrason. Sonochem., 36, 112 (2017)
Ilbay Z, Sahin S, Buyukkabasakal K, Korean J. Chem. Eng., 31(9), 1661 (2014)
Kundu P, Paul V, Kumar V, Mishra IM, Chem. Eng. Res. Des., 104, 773 (2015)
Kundu P, Paul V, Kumar V, Mishra IM, Petrol. Sci. Technol., 34, 350 (2016)
Shokir EMEM, Al-Homadhi ES, Al-Mahdy O, El-Midany AAH, Korean J. Chem. Eng., 31(8), 1496 (2014)
Davoodi P, Ghoreishi SM, Hedayati A, Korean J. Chem. Eng., 34(3), 854 (2017)
Sajilata MG, Bule MV, Chavan P, Singhal RS, Kamat MY, Sep. Purif. Technol., 71(2), 173 (2010)
Joshi C, Singhal RS, Biocatal. Agric. Biotechnol., 8, 228 (2016)
Savic DS, Lazic ML, Veljkovic VB, Vrvic MM, Chem. Ind. Chem. Eng., 11, 59 (2005)
Hirasawa K, Tsubokura A, U.S. Patent, 8,853,460 (2014).
Hirschberg J, Harker M, U.S. Patent, 5,935,808 (1999).
Rosa-Putra S, Hemmerlin A, Epperson J, Bach TJ, Guerra LH, Rohmer M, FEMS Microbiol. Lett., 204, 347 (2001)
Ferreira V, Faber MDO, Mesquita SDS, Pereira N, Electron. J. Biotechnol., 13, 5 (2010)
Clark DS, Blanch HW, Biochemical Engineering, CRC Press (1997).
Bhosale P, Larson AJ, Bernstein PS, J. Appl. Microbiol., 96(3), 623 (2004)
Verwaal R, Jiang Y, Wang J, Daran JM, Sandmann G, van den Berg JA, van Ooyen AJ, Yeast, 27, 983 (2010)
Doshi R, Nguyen T, Chang G, PNAS, 110, 7642 (2013)
Prabhu S, Rekha PD, Young CC, Hameed A, Lin SY, Arun AB, Appl. Biochem. Biotechnol., 171(4), 817 (2013)
Sandhya C, Sumantha A, Szakacs G, Pandey A, Process Biochem., 40(8), 2689 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로