Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 27, 2017
Accepted September 13, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of assembly condition on the morphologies and temperature-triggered transformation of layer-by-layer microtubes
Polymeric Materials Engineering Major, Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Korea 1Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States, USA
chsung@deu.ac.kr
Korean Journal of Chemical Engineering, January 2018, 35(1), 263-271(9), 10.1007/s11814-017-0249-0
Download PDF
Abstract
The morphology and temperature-triggered transformation of the LbL microtubes consisting of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) were investigated as a function of assembly pH, polyelectrolyte molecular weight (MW), and multivalent ions. The as-made microtubes assembled at pH 5.5 (PAH)/5.5 (PAA) showed perforations on the surface, while those assembled at pH 7.5 (PAH)/3.5 (PAA) showed smooth surface without perforations. At the same MW, the microtubes assembled at pH 7.5/3.5 transformed more effectively compared to those assembled at pH 5.5/5.5. The aspect ratio of microtubes assembled at pH 7.5/3.5 decreased from 5 to 2 as the temperature increased from room temperature to 121 °C. Furthermore, transformation of microtubes was facilitated as the MW of polyelectrolytes decreased. The dimensional stability of microtubes was influenced by the MW and added multivalent ions. These results were discussed in the context of the structure of the LbL assemblies.
References
Decher G, Science, 277(5330), 1232 (1997)
von Klitzing R, Phys. Chem. Chem. Phys., 8, 5012 (2006)
Lavalle P, Voegel JC, Vautier D, Senger B, Schaaf P, Ball V, Adv. Mater., 23(10), 1191 (2011)
Srivastava S, Kotov NA, Acc. Chem. Res, 41, 1831 (2008)
Malikova N, Pastoriza-Santos I, Schierhorn M, Kotov NA, Liz-Marzan LM, Langmuir, 18(9), 3694 (2002)
Johnston APR, Cortez C, Angelatos AS, Caruso F, Curr. Opin. Colloid Interface Sci., 11, 203 (2006)
Azzaroni O, Lau KHA, Soft Matter, 7, 8709 (2011)
Wang Y, Angelatos AS, Caruso F, Chem. Mater., 20, 848 (2008)
De Koker S, Hoogenboom R, De Geest BG, Chem. Soc. Rev., 41, 2867 (2012)
Tong WJ, Song XX, Gao CY, Chem. Soc. Rev., 41, 6103 (2012)
Gao CY, Leporatti S, Moya S, Donath E, Mohwald H, Chem. Eur. J., 9, 915 (2003)
Kohler K, Shchukin DG, Mohwald H, Sukhorukov GB, J. Phys. Chem. B, 109(39), 18250 (2005)
Kohler K, Mohwald H, Sukhorukov GB, J. Phys. Chem. B, 110(47), 24002 (2006)
Kohler K, Sukhorukov GB, Adv. Funct. Mater., 17(13), 2053 (2007)
Tong WJ, She SP, Xie LL, Gao CY, Soft Matter, 7, 8258 (2011)
Leporatti S, Gao C, Voigt A, Donath E, Mohwald H, Eur. Phys. J. E, 5, 13 (2001)
Kohler K, Shchukin DG, Sukhorukov GB, Mohwald H, Macromolecules, 37(25), 9546 (2004)
Dubrovskii AV, Shabarchina LI, Kim YA, Sukhorukov BI, Russ. J. Phys. Chem., 80, 1703 (2006)
Shao L, Lutkenhaus JL, Soft Matter, 6, 3363 (2010)
Fortier-McGill B, Reven L, Macromolecules, 42(1), 247 (2009)
Vidyasagar A, Sung C, Gamble R, Lutkenhaus JL, ACS Nano, 6, 6174 (2012)
Vidyasagar A, Sung C, Losensky K, Lutkenhaus JL, Macromolecules, 45(22), 9169 (2012)
Sung CH, Hearn KL, Lutkenhaus J, Soft Matter, 10, 6467 (2014)
Yildirim E, Zhang Y, Lutkenhaus JL, Sammalkorpi M, ACS Macro Lett., 4, 1017 (2015)
Zhang R, Zhang YP, Antila HS, Lutkenhaus JL, Sammalkorpi M, J. Phys. Chem. B, 121(1), 322 (2017)
Zhang YP, Li F, Valenzuela LD, Sammalkorpi M, Lutkenhaus JL, Macromolecules, 49(19), 7563 (2016)
He Q, Song WX, Moehwald H, Li JB, Langmuir, 24(10), 5508 (2008)
Sung C, Vidyasagar A, Hearn K, Lutkenhaus JL, J. Mater. Chem., 2, 2088 (2014)
Liu S, Ghosh K, Muthukumar M, J. Chem. Phys., 119(3), 1813 (2003)
Cho Y, Lee W, Jhon YK, Genzer J, Char K, Small, 6, 2683 (2010)
Shiratori SS, Rubner MF, Macromolecules, 33(11), 4213 (2000)
Choi J, Rubner MF, Macromolecules, 38(1), 116 (2005)
Liu XM, Goli KK, Genzer J, Rojas OJ, Langmuir, 27(8), 4541 (2011)
Schlitt S, Greiner A, Wendorff JH, Macromolecules, 41(9), 3228 (2008)
Chen JT, Zhang MF, Russell TP, Nano Lett., 7, 183 (2007)
Mendelsohn JD, Barrett CJ, Chan VV, Pal AJ, Mayes AM, Rubner MF, Langmuir, 16(11), 5017 (2000)
Jang Y, Seo J, Akgun B, Satija S, Char K, Macromolecules, 46(11), 4580 (2013)
Dressick WJ, Wahl KJ, Bassim ND, Stroud RM, Petrovykh DY, Langmuir, 28(45), 15831 (2012)
von Klitzing R, Phys. Chem. Chem. Phys., 8, 5012 (2006)
Lavalle P, Voegel JC, Vautier D, Senger B, Schaaf P, Ball V, Adv. Mater., 23(10), 1191 (2011)
Srivastava S, Kotov NA, Acc. Chem. Res, 41, 1831 (2008)
Malikova N, Pastoriza-Santos I, Schierhorn M, Kotov NA, Liz-Marzan LM, Langmuir, 18(9), 3694 (2002)
Johnston APR, Cortez C, Angelatos AS, Caruso F, Curr. Opin. Colloid Interface Sci., 11, 203 (2006)
Azzaroni O, Lau KHA, Soft Matter, 7, 8709 (2011)
Wang Y, Angelatos AS, Caruso F, Chem. Mater., 20, 848 (2008)
De Koker S, Hoogenboom R, De Geest BG, Chem. Soc. Rev., 41, 2867 (2012)
Tong WJ, Song XX, Gao CY, Chem. Soc. Rev., 41, 6103 (2012)
Gao CY, Leporatti S, Moya S, Donath E, Mohwald H, Chem. Eur. J., 9, 915 (2003)
Kohler K, Shchukin DG, Mohwald H, Sukhorukov GB, J. Phys. Chem. B, 109(39), 18250 (2005)
Kohler K, Mohwald H, Sukhorukov GB, J. Phys. Chem. B, 110(47), 24002 (2006)
Kohler K, Sukhorukov GB, Adv. Funct. Mater., 17(13), 2053 (2007)
Tong WJ, She SP, Xie LL, Gao CY, Soft Matter, 7, 8258 (2011)
Leporatti S, Gao C, Voigt A, Donath E, Mohwald H, Eur. Phys. J. E, 5, 13 (2001)
Kohler K, Shchukin DG, Sukhorukov GB, Mohwald H, Macromolecules, 37(25), 9546 (2004)
Dubrovskii AV, Shabarchina LI, Kim YA, Sukhorukov BI, Russ. J. Phys. Chem., 80, 1703 (2006)
Shao L, Lutkenhaus JL, Soft Matter, 6, 3363 (2010)
Fortier-McGill B, Reven L, Macromolecules, 42(1), 247 (2009)
Vidyasagar A, Sung C, Gamble R, Lutkenhaus JL, ACS Nano, 6, 6174 (2012)
Vidyasagar A, Sung C, Losensky K, Lutkenhaus JL, Macromolecules, 45(22), 9169 (2012)
Sung CH, Hearn KL, Lutkenhaus J, Soft Matter, 10, 6467 (2014)
Yildirim E, Zhang Y, Lutkenhaus JL, Sammalkorpi M, ACS Macro Lett., 4, 1017 (2015)
Zhang R, Zhang YP, Antila HS, Lutkenhaus JL, Sammalkorpi M, J. Phys. Chem. B, 121(1), 322 (2017)
Zhang YP, Li F, Valenzuela LD, Sammalkorpi M, Lutkenhaus JL, Macromolecules, 49(19), 7563 (2016)
He Q, Song WX, Moehwald H, Li JB, Langmuir, 24(10), 5508 (2008)
Sung C, Vidyasagar A, Hearn K, Lutkenhaus JL, J. Mater. Chem., 2, 2088 (2014)
Liu S, Ghosh K, Muthukumar M, J. Chem. Phys., 119(3), 1813 (2003)
Cho Y, Lee W, Jhon YK, Genzer J, Char K, Small, 6, 2683 (2010)
Shiratori SS, Rubner MF, Macromolecules, 33(11), 4213 (2000)
Choi J, Rubner MF, Macromolecules, 38(1), 116 (2005)
Liu XM, Goli KK, Genzer J, Rojas OJ, Langmuir, 27(8), 4541 (2011)
Schlitt S, Greiner A, Wendorff JH, Macromolecules, 41(9), 3228 (2008)
Chen JT, Zhang MF, Russell TP, Nano Lett., 7, 183 (2007)
Mendelsohn JD, Barrett CJ, Chan VV, Pal AJ, Mayes AM, Rubner MF, Langmuir, 16(11), 5017 (2000)
Jang Y, Seo J, Akgun B, Satija S, Char K, Macromolecules, 46(11), 4580 (2013)
Dressick WJ, Wahl KJ, Bassim ND, Stroud RM, Petrovykh DY, Langmuir, 28(45), 15831 (2012)