ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 18, 2017
Accepted September 20, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis of Ni promoted molybdenum dioxide nanoparticles using solvothermal cracking process for catalytic partial oxidation of n-dodecane

Department of Chemical Engineering, Kyung Hee University, Yongin 17104, Korea 1Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
Korean Journal of Chemical Engineering, January 2018, 35(1), 283-288(6), 10.1007/s11814-017-0262-3
downloadDownload PDF

Abstract

Ni promoted MoO2 nanoparticles were synthesized by combining spray pyrolysis and solvothermal cracking process. First, polycrystalline MoO3 microparticles were prepared by spray pyrolysis at 600 oC. Then nano-sized Ni- MoO2 particles were formed by solvothermal cracking process after adding Ni precursor, which disassembled polycrystalline MoO3 microparticles into crystalline grains by thermal expansion and shattered them into Ni-MoO2 nanoparticles by the subsequent solvothermal polyol reduction process. TPR profiles of Ni-MoO2 nanoparticles presented the decrease of reducibility of MoO2 with addition of Ni promoter. Catalytic partial oxidation of n-dodecane was conducted at various temperatures from 450 °C to 850 °C using Ni-MoO2 nanoparticles and pure MoO2 nanoparticles. H2 yield of all the Ni-MoO2 nanoparticles was higher than that of pure MoO2 nanoparticles at 850 °C. Specially, 7 and 10mol% Ni-MoO2 nanoparticles showed desirable catalytic performance of ca. 60% of H2 yield. This is mainly attributed to the existence of polymolybdate with addition of Ni and Ni2+ species partly located in the polymolybdate layer without formation of bulk Ni phase.

References

Marin-Flores O, Turba T, Ellefson C, Wang K, Breit J, Ahn J, Norton MG, Ha S, Appl. Catal. B: Environ., 98(3-4), 186 (2010)
Katrib A, Leflaive P, Hilaire L, Maire G, Catal. Lett., 38(1-2), 95 (1996)
Flores OGM, Ha S, Appl. Catal. A: Gen., 352(1-2), 124 (2009)
Kwon BW, Ellefson C, Breit J, Kim J, Norton MG, Ha S, J. Power Sources, 243, 203 (2013)
Kwon BW, Hu S, Marin-Flores O, Norton MG, Kim J, Scudiero L, Breit J, Ha S, Energy Technol., 2(5), 425 (2014)
Shi Y, Guo B, Corr SA, Shi Q, Hu Y, Heier KR, Chen L, Seshadri R, Stucky GD, Nano Lett., 9(12), 4215 (2009)
Han P, Ma W, Pang S, Kong Q, Yao J, Bi C, Cui G, J. Mater. Chem., 1(19), 5949 (2013)
Matsumura M, Hirai C, J. Chem. Eng. Jpn., 31(5), 734 (1998)
Ellefson CA, Marin-Flores O, Ha S, Norton MG, J. Mater. Sci., 47(5), 2057 (2012)
Cotton AF, Wilkinson G, Bochmann M, Murillo CA, Advanced inorganic chemistry, Wiley (1999).
Spevack PA, McIntyre NS, J. Phys. Chem., 97(42), 11020 (1993)
Zhou J, Xu NS, Deng SZ, Chen J, She JC, Wang ZL, Adv. Mater., 15(21), 1835 (2003)
Liang YG, Yi ZH, Yang SJ, Zhou LQ, Sun JT, Zhou YH, Solid State Ion., 177(5-6), 501 (2006)
Chen XY, Zhang ZJ, Li XX, Shi CW, Li XL, Chem. Phys. Lett., 418(1-3), 105 (2006)
Choi H, Heo JH, Ha S, Kwon BW, Yoon SP, Han J, Kim WS, Im SH, Kim J, Chem. Eng. J., 310, 179 (2017)
Lee HJ, Shin GS, Kim YC, Korean J. Chem. Eng., 32(7), 1267 (2015)
Choi H, Kim D, Yoon SP, Han J, Ha S, Kim J, J. Anal. Appl. Pyrolysis, 112, 276 (2015)
Liu M, Kong L, Lu C, Ma X, Li X, Luo Y, Kang L, J. Mater. Chem., 1(4), 1380 (2013)
Xu LH, Li XY, J. Cryst. Growth, 312(6), 851 (2010)
He Q, Marin-Flores O, Hu S, Scudiero L, Ha S, Norton MG, J. Nanopart. Res., 16, 2385 (2014)
Qu LL, Zhang WP, Kooyman PJ, Prins R, J. Catal., 215(1), 7 (2003)
Arnoldy P, De Jonge J, Moulijn JA, J. Phys. Chem., 89(21), 4517 (1985)
Chen J, Li W, Shen R, Korean J. Chem. Eng., 33(2), 500 (2016)
Marin-Flores O, Turba T, Breit J, Norton MG, Ha S, Appl. Catal. A: Gen., 381(1-2), 18 (2010)
He Q, Marin-Flores O, Hu S, Scudiero L, Ha S, Norton MG, Scr. Mater., 100, 55 (2015)
Dufresne P, Payen E, Grimblot J, Bonnelle JP, J. Phys. Chem., 85(16), 2344 (1981)
Matsubara E, Shinoda K, Japanese J. Appl. Phys., 38(S1), 576 (1999)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로