ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 22, 2017
Accepted September 21, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Degradation of drag reducing polymers in aqueous solutions

Faculty of Chemical and Petroleum Engineering, Razi University, Kermanshah, Iran
Korean Journal of Chemical Engineering, January 2018, 35(1), 34-43(10), 10.1007/s11814-017-0264-1
downloadDownload PDF

Abstract

The performance of drag reducing polymers in turbulent flow is restricted by their mechanical degradation. This study examines how the working fluid can affect the degradation behavior of diluted drag reducing polymeric solutions. Solutions having different proportions of tap water and de-ionized water served as the working fluids. Three commercially available water soluble polymeric agents, namely, an anionic copolymer of polyacrylamide, xanthan gum, and polyethylene oxide, were then added to these solutions. All experiments had identical flow rates corresponding to turbulent conditions in a laboratory scale pipe line. Variation of pressure drop in the pipe line was then measured for 2 hours. It was found that polymer degradation is accelerated in tap water solutions compared to that in de-ionized water solutions. However, this is dependent on the specification of the polymer used, namely, the molecular weight of the polymer and the rigidity of its molecular backbone. Furthermore, a new mathematical relation has been developed to investigate degradation of the polymers over time.

References

Roy A, Larson RG, Appl. Rheol., 15, 370 (2005)
Karami HR, Mowla D, J. Non-Newton. Fluid Mech., 177-178, 37 (2012)
Toms BA, in: Proceedings of the First International Congress on Rheology, Amsterdam, 135 (1948).
Reis LG, Oliveira IP, Pires RV, Lucas EF, Colloids Surf. A: Physicochem. Eng. Asp., 502, 121 (2016)
Edomwonyi-Otu L, Chinaud M, Angeli P, Exp. Therm. Fluid Sci., 64, 164 (2015)
Sreedhar I, Jain G, Srinivas P, Reddy KSK, Korean J. Chem. Eng., 31(4), 568 (2014)
Regupathi I, JagadeeshBabu PE, Chitra M, Murugesan T, Korean J. Chem. Eng., 27(4), 1205 (2010)
Wyatt NB, Gunther CM, Liberatore MW, J. Non-Newton. Fluid Mech., 166(1-2), 25 (2011)
Choi HJ, Jhon MS, Ind. Eng. Chem. Res., 35(9), 2993 (1996)
Kato H, Miura K, Yamaguchi H, Miyanaga M, J. Mar. Sci. Technol., 3, 122 (1998)
Pinho FT, Li CF, Younis BA, Sureshkumar R, J. Non-Newton. Fluid Mech., 154(2-3), 89 (2008)
Li CF, Sureshkumar R, Khomami B, J. Non-Newton. Fluid Mech., 140(1-3), 23 (2006)
Bhowmick SK, Gebel C, Reitzer H, Rheol. Acta, 14, 1026 (1975)
White CM, Mungal MG, Annu. Rev. Fluid Mech., 40, 235 (2008)
Virk PS, AIChE J., 21, 625 (1975)
Lumley JL, Annu. Rev. Fluid Mech., 1, 367 (1969)
Joseph D, Riccius O, Arney M, J. Fluid Mech., 171, 309 (1986)
De Gennes P, Physica A, 140, 9 (1986)
Han W, Dong Y, Choi H, Proceses, 5, 24 (2017)
Abubakar A, Al-Wahaibi T, Al-Wahaibi Y, Al-Hashmi AR, Al-Ajmi A, Chem. Eng. Res. Des., 92(11), 2153 (2014)
Karami HR, Mowla D, J. Petrol. Sci. Eng., 111, 78 (2013)
Karami HR, Keyhani M, Mowla D, J. Petrol. Sci. Eng., 138, 104 (2016)
Rouse PE, Sittel K, J. Appl. Phys., 24, 690 (1953)
Kim C, Jo D, Choi H, Kim C, Jhon M, Polym. Test, 20, 43 (2000)
Sohn JI, Kim CA, Choi HJ, Jhon MS, Carbohydr. Polym., 45, 61 (2001)
Pereira AS, Andrade RM, Soares EJ, J. Non-Newton. Fluid Mech., 202, 72 (2013)
Pereira AS, Soares EJ, J. Non-Newton. Fluid Mech., 179-180, 9 (2012)
den Toonder JMJ, Draad AA, Kuiken GDC, Nieuwstadt FTM, Appl. Sci. Res., 55, 63 (1995)
Hong CH, Choi HJ, Zhang K, Renou F, Grisel M, Carbohydr. Polym., 121, 342 (2015)
Sandoval GAB, Soares EJ, Rheol. Acta, 55(7), 559 (2016)
Bizotto VC, Sabadini E, J. Appl. Polym. Sci., 110(3), 1844 (2008)
Rho T, Park J, Kim C, Yoon HK, Suh HS, Polym. Degrad. Stabil., 51, 287 (1996)
Kulicke WM, Kotter M, Grager H, in: Polymer Characterization/Polymer Solutions, Springer Berlin Heidelberg, Berlin, Heidelberg, 1 (1989).
Kim NJ, Kim S, Lim SH, Chen K, Chun W, Int. Commun. Heat Mass Transf., 36, 1014 (2009)
Deshmukh SR, Singh RP, J. Appl. Polym. Sci., 33, 1963 (1987)
Hong CH, Choi HJ, Kim JH, J. Mech. Sci. Technol., 22, 1908 (2008)
Choi HJ, Kim CA, Sohn JI, Jhon MS, Polym. Degrad. Stabil., 69, 341 (2000)
Choi HJ, Lim ST, Lai PY, Chan CK, Phys. Rev. Lett., 89, 088302 (2002)
Matras Z, Kopiczak B, Chem. Eng. Res. Des., 96, 35 (2015)
Lee W, Vaseleski R, Metzner A, AIChE J., 20, 128 (1974)
Reddy GV, Singh RP, Rheol. Acta, 24, 296 (1985)
Deshmukh S, Chaturvedi P, Singh R, J. Appl. Polym. Sci., 30, 4013 (1985)
Deshmukh S, Singh R, J. Appl. Polym. Sci., 32, 6163 (1986)
Bewersdorff HW, Singh RP, Rheol. Acta, 27, 617 (1988)
Bello JB, Muller AJ, Saez AE, Polym. Bull., 36(1), 111 (1996)
Brostow W, Ertepinar H, Singh RP, Macromol., 23, 5109 (1990)
Muller G, Aurhourrache M, Lecourtier J, Chauveteau G, Int. J. Biol. Macromol., 8, 167 (1986)
Mohsenipour AA, Pal R, Prajapati K, Can. J. Chem. Eng., 91(1), 181 (2013)
Cho YI, Hartnett JP, Park YS, Chem. Eng. Commun., 21, 369 (1983)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로