ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 18, 2017
Accepted August 15, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Cu/ZnO/AlOOH catalyst for methanol synthesis through CO2 hydrogenation

1Greenhouse Gas Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea 2Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
hakjukim@kier.re.kr
Korean Journal of Chemical Engineering, January 2018, 35(1), 73-81(9), 10.1007/s11814-017-0230-y
downloadDownload PDF

Abstract

Catalytic conversion of CO2 to methanol is gaining attention as a promising route to using carbon dioxide as a new carbon feedstock. AlOOH supported copper-based methanol synthesis catalyst was investigated for direct hydrogenation of CO2 to methanol. The bare AlOOH catalyst support was found to have increased adsorption capacity of CO2 compared to conventional Al2O3 support by CO2 temperature-programmed desorption (TPD) and FT-IR analysis. The catalytic activity measurement was carried out in a fixed bed reactor at 523 K, 30 atm and GHSV 6,000 hr.1 with the feed gas of CO2/H2 ratio of 1/3. The surface basicity of the AlOOH supported Cu-based catalysts increased linearly according to the amount of AlOOH. The optimum catalyst composition was found to be Cu : Zn : Al=40 : 30 : 30 at%. A decrease of methanol productivity was observed by further increasing the amount of AlOOH due to the limitation of hydrogenation rate on Cu sites. The AlOOH supported catalyst with optimum catalyst compositions was slightly more active than the conventional Al2O3 supported Cu-based catalyst.

References

Hartmann DL, Global Physical Climatology (2nd Ed.) (2016).
Bratt D, Catalytic CO2 Hydrogenation - Literature Review: Technology Development Since 2014 (2016).
Storing CO2 through Enhanced Oil Recovery - Combining EOR with CO2 storage (EOR+) for profit, OECD/IEA (2015).
Olah GA, Prakash GKS, Goeppert A, J. Am. Chem. Soc., 113, 12881 (2011)
Patart M, France Patent, FR540343 (1921).
Audibert E, Fuel Sci. Pract., 5, 170 (1926)
Frolich PK, Fenske MR, Taylor PS, Southwick CA, Ind. Eng. Chem., 20, 1327 (1928)
Cornthwaite D, US Patent, 3,923,694 (1974).
Davies P, Snowdon FF, US Patent 3,326,956 (1967).
Gallagher JT, Kidd JM, Patent GB1159035 (1969).
Klier K, Chatikavanij V, Herman RG, Simmons GW, J. Catal., 74, 343 (1981)
Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA, Appl. Catal., 30, 333 (1987)
Waugh KC, Catal. Lett., 142(10), 1153 (2012)
Nakamura J, Choi Y, Fujitani T, Top. Catal., 22, 277 (2003)
Behrens M, Studt F, Kasatkin I, Kuhl S, Havecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Norskov JK, Schlogl R, Science, 336(6083), 893 (2012)
Studt F, Behrens M, Kunkes EL, Thomas N, Zander S, Tarasov A, Schumann J, Frei E, Varley JB, Pedersen FA, Nørskov JK, Schlogl R, Chem. Cat. Chem., 7, 1105 (2015)
Bonura G, Cordaro M, Cannilla C, Arena F, Frusteri F, Appl. Catal. B: Environ., 152-153, 152 (2014)
Li D, Ichikuni N, Shimazu S, Uematsu T, Appl. Catal. A: Gen., 17, 2351 (1998)
Heracleous E, Liakakou ET, Lappas AA, Lemonidou AA, Appl. Catal. A: Gen., 455, 145 (2013)
Raybaud P, Digne M, Iftimie R, Wellens W, Euzen P, Toulhoat H, J. Catal., 201(2), 236 (2001)
Farkas L, Gad P, Werner PE, Mater. Res. Bull., 12, 1213 (1977)
Priya GK, Padmaja P, Warrier KG, Damodaran AD, Aruldhas G, J. Mater. Sci. Lett., 16(19), 1584 (1997)
Morterra C, Emanuel C, Cerrato G, Magnacca G, J. Chem. Soc.-Faraday Trans., 88, 339 (1992)
Wickersheim KA, Korpi GK, J. Chem. Phys., 42, 579 (1965)
Fripiat JJ, Bosmans HJ, Rouxhet PG, J. Phys. Chem., 71, 1097 (1967)
Mazza D, Vallino M, Busca G, J. Amer. Ceram. Soc., 75, 1929 (1992)
McMillan P, Piriou B, J. Non-Cryst. Solids, 53, 279 (1982)
Morterra C, Ghiotti G, Boccuzzi F, Coluccia S, J. Catal., 51, 299 (1978)
Philipp R, Fujimoto K, J. Phys. Chem., 96, 9035 (1992)
Di Cosimo JI, Diez VK, Xu M, Iglesia E, Apesteguia CR, J. Catal., 178(2), 499 (1998)
Pakharukova VP, Shalygin AS, Gerasimov EY, Tsybulya SV, Martyanov ON, J. Sol. State Chem, 233, 294 (2016)
Burch R, Golunski SE, Spencer MS, J. Chem. Soc.-Faraday Trans., 86, 2683 (1990)
Wu GD, Wang XL, Wei W, Sun YH, Appl. Catal. A: Gen., 377(1-2), 107 (2010)
Liu Y, Sun K, Ma H, Xu X, Wang X, Catal. Commun., 11, 880 (2010)
Gao P, Li F, Zhao N, Xiao FK, Wei W, Zhong LS, Sun YH, Appl. Catal. A: Gen., 468, 442 (2013)
Le Valant A, Comminges C, Tisseraud C, Canaff C, Pinard L, Pouilloux Y, J. Catal., 324, 41 (2015)
Tisseraud C, Comminges C, Belin T, Ahouari H, Soualah A, Pouilloux Y, Le Valant A, J. Catal., 330, 533 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로