Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 28, 2018
Accepted July 18, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Rheo-kinetics of bovine serum albumin in catanionic surfactant systems
School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Korea
Korean Journal of Chemical Engineering, October 2018, 35(10), 1969-1978(10), 10.1007/s11814-018-0128-3
Download PDF
Abstract
The effects of catanionic surfactant systems consisting of mixtures of cationic cetyltrimethylamonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS) on the rheological properties and kinetics of bovine serum albumin (BSA) were investigated. The ionic strength of the solution was varied by using different mixing ratio of SDS and CTAB. Gelation curves observed in dynamic viscoelastic measurements were fitted with gelation kinetics models to describe the gelation under isothermal and non-isothermal conditions. Overall, the gelation of BSA in cationic-rich solutions was found to be more energetically favorable when compared with BSA solvated in anionic-rich solutions. Consequently, highest gel temperature (Tgel) and time (tgel) were observed for anionic-rich solutions with SDS/CTAB molar ratio of 4.0 (i.e., SDS/CTAB=4.0), while lowest gel temperature and time were found for cationic-rich solutions with SDS/CTAB molar ratio of 0.25 (SDS/CTAB=0.25). BSA in equal molar ratio of the mixed surfactants (SDS/ CTAB=1.0) showed a gel temperature and time in the halfway between the anionic and cationic-rich regions. Interestingly, under isothermal and non-isothermal conditions, BSA in equimolarly mixed and anionic-rich solutions showed a heat-dependent protective effect against thermal denaturation and gelation. The protective effect on BSA gelation in equimolar and anionic-rich solutions was diminished by increasing the catanionic concentration under non-isothermal conditions, while under isothermal conditions, protective effect on BSA gelation increased with catanionic concentration. On the other hand, cationic-rich solutions did not protect BSA from thermal denaturation and gelation, and therefore the gelation rate increased with catanionic concentration in all heating conditions examined.
References
Nnyigide OS, Oh YA, Song HY, Park EK, Choi SH, Hyun K, Korea-Aust. Rheol. J., 29(2), 101 (2017)
Yu Z, Yu M, Zhang Z, Hong G, Xiong Q, Nanoscale Res. Lett., 9, 343 (2014)
Chakraborty A, Basak S, Colloids Surf. B: Biointerfaces, 63, 83 (2008)
Rogozea A, Matei I, Turcu IM, Ionita G, Sahini VE, Salifoglou A, J. Phys. Chem. B, 116(49), 14245 (2012)
Wang G, Hou H, Chen Y, Yan C, Baiab G, Luab Y, RSC Adv., 6, 19700 (2016)
Wasylewski Z, Kozik A, Eur. J. Biochem., 95, 121 (1979)
Sukow W, Sandberg H, Lewis E, Eatough D, Hansen L, Biochemistry, 19, 912 (1980)
Bolattin M, Nandibewoor S, Joshi S, Dixit S, Chimatadar S, RSC Adv., 6, 63463 (2016)
Singh RB, Mahanta S, Guchhait N, Chem. Phys. Lett., 463(1-3), 183 (2008)
Arriaga LR, Varade D, Carriere D, Drenckhan W, Langevin D, Langmuir, 29(10), 3214 (2013)
Lu R, Cao N, Lai L, Zhu B, Zhao G, Xiao J, Colloids Surf. B: Biointerfaces, 41, 139 (2005)
Renoncourt A, Study of supra-aggregates in catanionic surfactant systems, University of Regensburg (2005).
Donato L, Garnier C, Novales B, Durand S, Doublier JL, Biomacromolecules, 6(1), 374 (2005)
Bocker L, Ruhs PA, Boni L, Fischer P, Kuster S, ACS Biomater. Sci. Eng., 2, 90 (2016)
Gillham JK, Benci JA, J. Appl. Polym. Sci., 18, 951 (1974)
Shakhnovich EI, Finkelstein AV, Biopolymers, 28, 1667 (1989)
Ahmed J, Ramaswamy HS, Alli I, J. Food Sci., 71, 158 (2006)
Singh H, Waungana A, Int. Dairy J., 11, 543 (2001)
Eleya MMO, Gunasekaran S, J. Food Sci., 67, 725 (2002)
Date P, Ottoor D, Polym. -Plast. Technol. Eng., 55, 403 (2016)
Salzer S, Rosema NA, Martin EC, Slot DE, Timmer CJ, Dorfer CE, van der Weijden GA, Clin. Oral Invest., 20, 443 (2016)
Patel A, Cholkar K, Mitra AK, Ther. Deliv., 5, 337 (2014)
Chambon F, Winter HH, J. Rheol., 31, 683 (1987)
Ampudia J, Larrauri E, Gil EM, Rodriguez M, Leon LM, J. Appl. Polym. Sci., 71, 1239 (1997)
Laza JM, Julian CA, Larrauri E, Rodriguez M, Leon LM, Polymer, 40, 35 (1998)
Grisel M, Muller G, Macromolecules, 31(13), 4277 (1998)
Madbouly SA, Otaigbe JU, Macromolecules, 39(12), 4144 (2006)
De Maria S, Ferrari G, Maresca P, Food Nutr. Sci., 6, 770 (2015)
Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH, Prog. Polym. Sci, 36, 1697 (2011)
Chronakis IS, J. Agric. Food Chem., 49, 888 (2001)
Van Kleef FSM, Biopolymers, 25, 31 (1986)
Alvarez MD, Cuesta FJ, Herranz B, Canet W, Foods, 6, 3 (2017)
Otzen DE, Biophys. J., 83, 2219 (2002)
Valstar A, Protein-Surfactant Interactions, Ph.D. Dissertations, Uppsala University, Uppsala, Sweden (2000).
Puppo MC, Anon MC, J. Agric. Food Chem., 46, 3039 (1998)
Yoshida M, Kohyama K, Nishinari K, Biosci. Biotechnol. Biochem., 56, 725 (1992)
Bon CL, Nicolai T, Durand D, Macromolecules, 6120, 32 (1999)
Nnyigide OS, Hyun K, J. Chem. Technol. Metall., 51, 147 (2016)
Migliori M, Gabriele D, Baldino N, Lupi FR, De Cindio B, J. Food Proc. Eng., 34, 1266 (2011)
Chen HH, Kang HY, Chen SD, J. Food Eng., 88(1), 45 (2008)
Alvarez MD, Fuentes R, Olivares MD, Cuesta FJ, Canet W, J. Food Eng., 136, 9 (2014)
Rhim JW, Nunes RV, Jones VA, Swartzel KR, J. Food Sci., 54, 446 (1989)
Ahmed J, Ramaswamy HS, Ayad A, Alli I, Food Hydrocolloids, 22, 278 (2008)
Da Silva JA, Gongalves MP, Rao MA, Int. J. Biol. Macromol., 17, 25 (1995)
Yoon WB, Gunasekaran S, Park JW, J. Food Sci., 69, E238 (2004)
da Silva MA, Areas EPG, J. Colloid Interface Sci., 289(2), 394 (2005)
Kundu S, Chinchalikar AJ, Das K, Aswal VK, Kohlbrecher J, Chem. Phys. Lett., 584, 172 (2013)
Lefevre F, Fauconneau B, Ouali A, Culioli J, J. Sci. Food Agric., 82, 452 (2002)
Sun L, The Department of Chemical Engineering, Louisiana State University (2002).
Tung CYM, Dynes PJ, J. Appl. Polym. Sci., 27, 569 (1982)
Fang YP, Takahashi R, Nishinari K, Biomacromolecules, 5(1), 126 (2004)
Kohyama K, Nishinari K, J. Agric. Food Chem., 41, 8 (1993)
Niki R, Kohyama K, Sano Y, Nishinari K, Polym. Gels Networks, 2, 105 (1994)
Yoshimura M, Nishinari K, Food Hydrocolloids, 13, 227 (1999)
Tobitani A, Rossmurphy SB, Macromolecules, 30(17), 4845 (1997)
Jachimska B, Wasilewska M, Adamczyk Z, Langmuir, 24(13), 6866 (2008)
Nnyigide OS, Lee SG, Hyun K, J. Mol. Model., 24, 75 (2018)
Jonsson M, Johansson H, J. Chromatogr. A, 983, 133 (2003)
Moriyama Y, Watanabe E, Kobayashi K, Harano H, Inui E, Takeda K, J. Phys. Chem. B, 112(51), 16585 (2008)
Holt JC, Creeth JM, Biochem. J., 129, 665 (1972)
Moriyama Y, Sato Y, Takeda K, J. Colloid Interface Sci., 156, 420 (1993)
Markus G, Love RL, Wissler FC, J. Biol. Chem., 239, 3687 (1964)
Yu Z, Yu M, Zhang Z, Hong G, Xiong Q, Nanoscale Res. Lett., 9, 343 (2014)
Chakraborty A, Basak S, Colloids Surf. B: Biointerfaces, 63, 83 (2008)
Rogozea A, Matei I, Turcu IM, Ionita G, Sahini VE, Salifoglou A, J. Phys. Chem. B, 116(49), 14245 (2012)
Wang G, Hou H, Chen Y, Yan C, Baiab G, Luab Y, RSC Adv., 6, 19700 (2016)
Wasylewski Z, Kozik A, Eur. J. Biochem., 95, 121 (1979)
Sukow W, Sandberg H, Lewis E, Eatough D, Hansen L, Biochemistry, 19, 912 (1980)
Bolattin M, Nandibewoor S, Joshi S, Dixit S, Chimatadar S, RSC Adv., 6, 63463 (2016)
Singh RB, Mahanta S, Guchhait N, Chem. Phys. Lett., 463(1-3), 183 (2008)
Arriaga LR, Varade D, Carriere D, Drenckhan W, Langevin D, Langmuir, 29(10), 3214 (2013)
Lu R, Cao N, Lai L, Zhu B, Zhao G, Xiao J, Colloids Surf. B: Biointerfaces, 41, 139 (2005)
Renoncourt A, Study of supra-aggregates in catanionic surfactant systems, University of Regensburg (2005).
Donato L, Garnier C, Novales B, Durand S, Doublier JL, Biomacromolecules, 6(1), 374 (2005)
Bocker L, Ruhs PA, Boni L, Fischer P, Kuster S, ACS Biomater. Sci. Eng., 2, 90 (2016)
Gillham JK, Benci JA, J. Appl. Polym. Sci., 18, 951 (1974)
Shakhnovich EI, Finkelstein AV, Biopolymers, 28, 1667 (1989)
Ahmed J, Ramaswamy HS, Alli I, J. Food Sci., 71, 158 (2006)
Singh H, Waungana A, Int. Dairy J., 11, 543 (2001)
Eleya MMO, Gunasekaran S, J. Food Sci., 67, 725 (2002)
Date P, Ottoor D, Polym. -Plast. Technol. Eng., 55, 403 (2016)
Salzer S, Rosema NA, Martin EC, Slot DE, Timmer CJ, Dorfer CE, van der Weijden GA, Clin. Oral Invest., 20, 443 (2016)
Patel A, Cholkar K, Mitra AK, Ther. Deliv., 5, 337 (2014)
Chambon F, Winter HH, J. Rheol., 31, 683 (1987)
Ampudia J, Larrauri E, Gil EM, Rodriguez M, Leon LM, J. Appl. Polym. Sci., 71, 1239 (1997)
Laza JM, Julian CA, Larrauri E, Rodriguez M, Leon LM, Polymer, 40, 35 (1998)
Grisel M, Muller G, Macromolecules, 31(13), 4277 (1998)
Madbouly SA, Otaigbe JU, Macromolecules, 39(12), 4144 (2006)
De Maria S, Ferrari G, Maresca P, Food Nutr. Sci., 6, 770 (2015)
Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH, Prog. Polym. Sci, 36, 1697 (2011)
Chronakis IS, J. Agric. Food Chem., 49, 888 (2001)
Van Kleef FSM, Biopolymers, 25, 31 (1986)
Alvarez MD, Cuesta FJ, Herranz B, Canet W, Foods, 6, 3 (2017)
Otzen DE, Biophys. J., 83, 2219 (2002)
Valstar A, Protein-Surfactant Interactions, Ph.D. Dissertations, Uppsala University, Uppsala, Sweden (2000).
Puppo MC, Anon MC, J. Agric. Food Chem., 46, 3039 (1998)
Yoshida M, Kohyama K, Nishinari K, Biosci. Biotechnol. Biochem., 56, 725 (1992)
Bon CL, Nicolai T, Durand D, Macromolecules, 6120, 32 (1999)
Nnyigide OS, Hyun K, J. Chem. Technol. Metall., 51, 147 (2016)
Migliori M, Gabriele D, Baldino N, Lupi FR, De Cindio B, J. Food Proc. Eng., 34, 1266 (2011)
Chen HH, Kang HY, Chen SD, J. Food Eng., 88(1), 45 (2008)
Alvarez MD, Fuentes R, Olivares MD, Cuesta FJ, Canet W, J. Food Eng., 136, 9 (2014)
Rhim JW, Nunes RV, Jones VA, Swartzel KR, J. Food Sci., 54, 446 (1989)
Ahmed J, Ramaswamy HS, Ayad A, Alli I, Food Hydrocolloids, 22, 278 (2008)
Da Silva JA, Gongalves MP, Rao MA, Int. J. Biol. Macromol., 17, 25 (1995)
Yoon WB, Gunasekaran S, Park JW, J. Food Sci., 69, E238 (2004)
da Silva MA, Areas EPG, J. Colloid Interface Sci., 289(2), 394 (2005)
Kundu S, Chinchalikar AJ, Das K, Aswal VK, Kohlbrecher J, Chem. Phys. Lett., 584, 172 (2013)
Lefevre F, Fauconneau B, Ouali A, Culioli J, J. Sci. Food Agric., 82, 452 (2002)
Sun L, The Department of Chemical Engineering, Louisiana State University (2002).
Tung CYM, Dynes PJ, J. Appl. Polym. Sci., 27, 569 (1982)
Fang YP, Takahashi R, Nishinari K, Biomacromolecules, 5(1), 126 (2004)
Kohyama K, Nishinari K, J. Agric. Food Chem., 41, 8 (1993)
Niki R, Kohyama K, Sano Y, Nishinari K, Polym. Gels Networks, 2, 105 (1994)
Yoshimura M, Nishinari K, Food Hydrocolloids, 13, 227 (1999)
Tobitani A, Rossmurphy SB, Macromolecules, 30(17), 4845 (1997)
Jachimska B, Wasilewska M, Adamczyk Z, Langmuir, 24(13), 6866 (2008)
Nnyigide OS, Lee SG, Hyun K, J. Mol. Model., 24, 75 (2018)
Jonsson M, Johansson H, J. Chromatogr. A, 983, 133 (2003)
Moriyama Y, Watanabe E, Kobayashi K, Harano H, Inui E, Takeda K, J. Phys. Chem. B, 112(51), 16585 (2008)
Holt JC, Creeth JM, Biochem. J., 129, 665 (1972)
Moriyama Y, Sato Y, Takeda K, J. Colloid Interface Sci., 156, 420 (1993)
Markus G, Love RL, Wissler FC, J. Biol. Chem., 239, 3687 (1964)