ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 12, 2018
Accepted June 24, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Reduced graphene oxide supported V2O5-WO3-TiO2 catalysts for selective catalytic reduction of NOx

1Green Materials & Processes Group, Ulsan Regional Division, Korea Institute of Industrial Technology, Ulsan 44413, Korea 2Department of Materials Science and Engineering, Pusan National University, Busan 46142, Korea 3R&D Center, NANO. Co., Ltd., Sangju 37257, Korea
hdkim@kitech.re.kr
Korean Journal of Chemical Engineering, October 2018, 35(10), 1988-1993(6), 10.1007/s11814-018-0109-6
downloadDownload PDF

Abstract

We present a reduced-graphene-oxide (rGO)-supported V2O5-WO3-TiO2 (VWTi) catalysts for the efficient selective catalytic reduction of NOx. The rGO support provides well-dispersed functional sites for the nucleation of nanoparticles, allowing the formation of VWTi catalysts with high specific surface areas. The dispersion of the nanoparticles, as observed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), confirmed the uniform dispersion of the particles on the rGO surface. Detailed Fourier-transform infrared (FT-IR) and NH3 temperature-programmed desorption (NH3-TPD) analyses indicated that the high density of acidic sites provided by the rGO is key to the observed enhancement of NOx removal efficiency, and the rGO-supported catalysts exhibit improved NOx removal efficiencies with smaller amounts of V2O5 and WO3 compared with the commercially available V2O5-WO3-TiO2 catalysts.

References

Andreoli S, Deorsola FA, Galletti C, Pirone R, Chem. Eng. J., 278, 174 (2015)
Hwang J, Ha HJ, Ryu J, Choi JJ, Ahn CW, Kim JW, Hahn BD, Yoon WH, Lee H, Choi JH, Catal. Commun., 94, 1 (2017)
Ko J, Jin D, Jang W, Myung CL, Kwon S, Park S, Appl. Energy, 187, 652 (2016)
Qi C, Bao W, Wang L, Li H, Wu W, Catalysts, 7, 110 (2017)
Chen JP, Yang RT, Appl. Catal. A: Gen., 80, 135 (1992)
Xiao X, Xiong SC, Li B, Geng Y, Yang SJ, Catal. Lett., 146(11), 2242 (2016)
Choi JH, Kim SK, Bak YC, Korean J. Chem. Eng., 18(5), 719 (2001)
Long RQ, Yang RT, J. Catal., 186, 254 (1991)
Li B, Wu C, Li Y, Zhang J, Environ. Sci. Technol., 45, 7394 (2011)
Wu X, Si Z, Li G, Weng D, Ma Z, J. Rare Earths., 29, 64 (2011)
Kamata H, Ueno S, Naito T, Yukimura A, Ind. Eng. Chem. Res., 47(21), 8136 (2008)
Madia G, Elsener M, Koebel M, Raimondi F, Wokaun A, Appl. Catal. A: Gen., 39, 181 (2002)
Djerad S, Tifouti L, Crocoll M, Weisweiler W, J. Mol. Catal. A-Chem., 208(1-2), 257 (2004)
Alemany LJ, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F, J. Catal., 155(1), 117 (1995)
Ehrlich VA, Nersesyan AK, Hoelzl C, Ferk F, et al., Environ. Health Perspect., 116, 1689 (2008)
Turkez H, Sonmez E, Turkez O, Mokhtar YI, Di Stefano A, Turgut G, Braz. Arch. Biol. Technol., 57, 532 (2014)
Cao M, Wang XX, Cao WQ, Yuna J, J. Mater. Chem. C, 3, 6589 (2015)
Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
Su W, Lu XN, Jia SH, Wang J, Ma HZ, Xing Y, Catal. Lett., 145(7), 1446 (2015)
Lee KK, Deng S, Fan HM, Mhaisalkar S, Tan HR, Tok ES, Loh KP, Chin WS, Sow CH, Nanoscale, 4, 2958 (2012)
Wang P, Zhai Y, Wang D, Dong S, Nanoscale, 3, 1640 (2010)
Mao S, Cui S, Lu G, Yu K, Wen Z, Chen J, J. Mater. Chem., 22, 11009 (2012)
Aguilar-Romero M, Camposeco R, Castillo S, Marin J, Rodriguez-Gonzalez V, Garcia-Serrano LA, Mejia-Centeno I, Fuel, 198, 123 (2017)
Nguyen VK, Park JH, Shin CH, Korean J. Chem. Eng., 31(4), 582 (2014)
Kwon DW, Nam KB, Hong SC, Appl. Catal. A: Gen., 497, 160 (2015)
VGB Technical Association of Large Power Plant Operators, Guideline for the testing of deNOx catalysts, VGB PowerTech, Essen (1998).
Lu XN, Song CY, Chang CC, Teng YX, Tong ZS, Tang XL, Ind. Eng. Chem. Res., 53(29), 11601 (2014)
Shen S, Wang X, Chen T, Feng Z, Li C, J. Phys. Chem. C, 118, 12661 (2014)
Shen B, Liu T, Zhao N, Yang X, Deng L, J. Environ. Sci., 22, 1447 (2010)
Matralis HK, Papadopoulou C, Kordulis C, Elguezabal AA, Corberan VC, Appl. Catal. A: Gen., 126(2), 365 (1995)
Wang CZ, Yang SJ, Chang HZ, Peng Y, Li JH, Chem. Eng. J., 225, 520 (2013)
Nova I, Tronconi E, Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts, Springer, New York (2014).
Kongsong P, Sikong L, Niyomwas S, Rachpech V, Sci. World J., 2014, 869706 (2014)
Zheng H, Neo CY, Mei X, Qiu J, Ouyang J, J. Mater. Chem., 22, 14465 (2012)
Mjejri I, Etteyeb N, Sediri F, Mater. Res. Bull., 48(9), 3335 (2013)
Wang S, Guo T, Pan W, Li M, Sun P, Liu S, Liu S, Sun X, Liu J, Phys. Chem. Chem. Phys., 19, 5333 (2017)
Topsoe NY, Dumesic JA, Topsoe H, J. Catal., 151(1), 241 (1995)
Du X, Gao X, Qiu K, Luo Z, Cen K, J. Phys. Chem. C, 119, 1905 (2015)
Lin CH, Bai H, Appl. Catal. B: Environ., 42(3), 279 (2003)
Jo SH, Shin B, Shin MC, Van Tyne CJ, Lee H, Catal. Commun., 57, 134 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로