ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 16, 2017
Accepted June 24, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Improvement of liquid fuel atomization for an internal engine using an auxiliary device

Department of Environmental Science and Engineering, Center for Environmental Studies, Kyung Hee University, Yongin 17104, Korea 1EG Power Tec Co., Ltd., Suwon 16229, Korea
Korean Journal of Chemical Engineering, October 2018, 35(10), 2001-2009(9), 10.1007/s11814-018-0106-9
downloadDownload PDF

Abstract

Controlled atomization is essential for reducing soot emission in practical diesel engines. In this work, an auxiliary device called a FAD (fuel activation device) was inserted into the fuel injection line to induce cavitation in the diesel spray. The performance of the FAD was examined in terms of pollutant emissions in a field test as well as aerosol sizes in lab-scale experiments. Experimental results showed that FAD reduced the size distribution of injected droplets and decreased the fuel consumption rate and emission amounts of PM10, CO, and NOx by 42%, 50% and 13.4%, respectively.

References

Kumar N, Chauhan SR, J. Renew. Sustain. Energy Rev., 21, 633 (2013)
Bergthorson JM, Thomson MJ, J. Renew. Sustain. Energy Rev., 42, 1393 (2015)
Yilmaz N, Fuel, 94(1), 444 (2012)
Kim W, The Seoul Institute Annual Research Digest 2016, The Seoul Institute, Seoul (2016).
Gupta S, Poola R, Sekar R, SAE Trans., 109, 1713 (2000)
Talibi M, Hellier P, Balachandran R, Ladommatos N, Int. J. Hydrog. Energy, 39(27), 15088 (2014)
Heywood J, Internal combustion engine fundamentals, McGraw-Hill, New York (1988).
Xing F, Kumar A, Huang Y, Chan SN, Ruan C, Gu S, Fan XL, Appl. Energy, 193, 28 (2017)
Bayvel LP, Liquid atomization, Taylor & Francis, Washington, D.C. (1993).
Sharma S, Kumar R, Chowdhury A, Yoon Y, Kumar S, Fuel, 199, 229 (2017)
Bergwerk W, Proc. Inst. Mech. Eng., 173, 655 (1959)
Benajes J, Pastor JV, Payri R, Plazas AH, J. Fluids Eng., 126, 63 (2004)
Payri R, Garcia JM, Salvador FJ, Gimeno J, Fuel, 84(5), 551 (2005)
Suh HK, Park SW, Lee CS, Fuel, 86, 2833 (2008)
Brennen CE, Cavitation and Bubble Dynamics, Oxford University Press, New York (1995).
Nurick WH, J. Fluids Eng., 98, 681 (1976)
Sou A, Maulana MI, Isozaki K, Tomiyama A, J. Fluid Sci. Technol., 3, 622 (2008)
Tamaki N, Shimizu M, Nishida K, Hiroyasu H, Atomization Sprays, 8, 179 (1998)
Soteriou C, Andrews R, Smith M, SAE Trans., 104, 128 (1995)
Choi SI, Feng JP, Seo HS, Jo YM, J. Korean Soc. Atmos. Environ., 33, 306 (2017)
Arcoumanis C, Flora H, Gavaises M, Badami M, SAE Trans., 109, 1485 (2000)
Jiang GJ, Zhang YS, Wen H, Xiao G, Energy Conv. Manag., 103, 208 (2015)
Gao YQ, Wei MR, Yan FW, Chen LF, Li GZ, Feng LY, Exp. Therm. Fluid Sci., 87, 69 (2017)
He ZX, Zhang ZY, Guo GM, Wang Q, Leng XY, Sun SX, Int. J. Heat Mass Transf., 78, 13 (2016)
Carsten B, Mixture Formation in Internal Combustion Engine, Springer Publications, New York and Berlin (2006).
Moyne LL, Int. J. Spray Combust., 2, 49 (2010)
Salvador FJ, Ruiz S, Crialesi-Esposito M, Blanquer I, Int. J. Multiph. Flow, 102, 49 (2018)
Arai M, Physics behind diesel sprays and its combustion, LAP Lambert Academic Publishing (2016).
Gavaises M, Andriotis A, Papoulias D, Mitroglou N, Theodorakakos A, Phys. Fluids, 21, 052107 (2009)
He ZX, Zhong WJ, Wang Q, Jiang ZC, Shao Z, Int. J. Therm. Sci., 70, 132 (2013)
Sou A, Bicer B, Tomiyama A, Comput. Fluids, 103, 42 (2014)
He ZX, Tao XC, Zhong WJ, Leng XY, Wang Q, Zhao P, Int. J. Heat Mass Transf., 65, 117 (2015)
Bicer B, Sou A, Appl. Math. Model., 40, 4712 (2016)
Mohan B, Yang WM, Chou SK, Eng. Appl. Comp. Fluid, 8, 70 (2014)
Park D, Lee T, Lee Y, Jeong W, Kwon SB, Kim D, Lee K, Sci. Total Environ., 575, 97 (2017)
Prabhakar BS, Laxmanrao SP, Salim KJAM, Int. J. Innov. Res. Sci. Eng. Technol., 2, 6200 (2013)
Wang ZM, Xu HM, Jiang CZ, Wyszynski ML, Fuel, 174, 140 (2016)
Kim HJ, Park SH, Lee CS, Fuel Process. Technol., 91(3), 354 (2010)
Jing DL, Zhang F, Li YF, Xu HM, Shuai SJ, Fuel, 199, 478 (2017)
Li GB, Cao JM, Li ML, Quan YH, Chen ZY, Fuel Process. Technol., 104, 352 (2012)
Schick, RJ, 47th Chemical Processing Industry Exposition, New York (1997).
Hiroyasu H, Kadota T, Arai M, Bull. JSME, 26, 569 (1983)
Hidy GM, J. Colloid Sci., 20, 123 (1965)
Afshar A, Evaluation of liquid fuel spray models for hybrid RANS/ lLES and DLES prediction of turbulent reactive flows, University of Toronto, M.S. Thesis (2014).
Suh HK, Park SH, Lee CS, Int. J. Automot. Technol., 9, 217 (2008)
Lee S, Park S, Fuel, 137, 50 (2014)
Huang S, Deng P, Huang RH, Wang ZW, Ma YJ, Dai H, Energy Conv. Manag., 106, 911 (2015)
Hiroyasu H, Atomization Sprays, 10, 511 (2000)
Hendratna KK, Nishida O, Fujita H, Harano W, Yoo DH, Int. J. Res. Rev. Appl. Sci., 5, 101 (2010)
Resitoglu IA, Altinisik K, Keskin A, Clean Technol. Environ. Policy, 17, 15 (2015)
Azad K, Rasul M, Giannangelo B, Islam R, Int. J. Automot. Mech. Eng., 12, 2866 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로