ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 4, 2018
Accepted July 18, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Potential of different additives to improve performance of potassium carbonate for CO2 absorption

Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia 15 16145 Genova, Italy 1Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
rouzbeh.ramezani@edu.unige.it
Korean Journal of Chemical Engineering, October 2018, 35(10), 2065-2077(13), 10.1007/s11814-018-0123-8
downloadDownload PDF

Abstract

The performance of potassium carbonate (K2CO3) solution promoted by three amines, potassium alaninate (K-Ala), potassium serinate (K-Ser) and aminoethylethanolamine (AEEA), in terms of heat of absorption, absorption capacity and rate was studied experimentally. The experiments were performed using a batch reactor, and the results were compared to pure monoethanolamine (MEA) and K2CO3 solutions. The heat of absorption of K2CO3+additive solution was calculated using the Gibbs-Helmholtz equation. In addition, a correlation for prediction of CO2 loading was presented. The results indicated that absorption heat, absorption rate and loading capacity of CO2 increase as the concentration of additive increases. The blend solutions have higher CO2 loading capacity and absorption rate when compared to pure K2CO3. The heat of CO2 absorption for K2CO3+additive solutions was found to be lower than that of the pure MEA. Among the additives, AEEA showed the highest CO2 absorption capacity and absorption rate with K2CO3. In conclusion, the K2CO3+AEEA solution with high absorption performance can be a potential solvent to replace the existing amines for CO2 absorption.

References

Liang Z, Fu K, Idem R, Tontiwachwuthikul P, Chinese J. Chem. Eng., 24, 278 (2016)
Ramezani R, Mazinani S, Di Felice R, Darvishmanesh S, Van der Bruggen B, Int. J. Greenh. Gas Con., 62, 61 (2017)
Ramazani R, Mazinani S, Hafizi A, Jahanmiri A, Van der Bruggen B, Darvishmanesh S, Sep. Sci. Technol., 51(2), 327 (2016)
Setameteekul A, Aroonwilas A, Veawab A, Sep. Purif. Technol., 64(1), 16 (2008)
Sreedhar I, Nahar T, Venugopal A, Srinivas B, Renew. Sust. Energ. Rev., 76, 1080 (2017)
Ramazani R, Mazinani S, Jahanmiri A, Van Der Bruggen B, Int. J. Greenh. Gas Con., 45, 27 (2016)
Shen SF, Yang YN, Wang Y, Ren SF, Han JZ, Chen AB, Fluid Phase Equilib., 399, 40 (2015)
Hu GP, Smith KH, Wu Y, Kentish SE, Stevens GW, Energy Fuels, 31(4), 4280 (2017)
Thee H, Smith KH, da Silva G, Kentish SE, Stevens GW, Chem. Eng. J., 181, 694 (2012)
Anderson C, Harkin T, Ho M, Mumford K, Qader A, Stevens G, Hooper B, Energy Procedia, 37, 225 (2013)
Thee H, Nicholas N, Smith K, Silva G, Kentish S, Stevens G, Int. J. Greenh. Gas Con., 20, 212 (2014)
Kim YE, Choi JH, Yun SH, Nam SC, Yoon YI, Korean J. Chem. Eng., 33(12), 3465 (2016)
Bhosale RR, Kumar A, AlMomani F, Ghosh U, AlNouss A, Scheffe J, Gupta RB, Ind. Eng. Chem. Res., 55(18), 5238 (2016)
Fu D, Xie JL, J. Chem. Thermodyn., 102, 310 (2016)
Mondal BK, Bandyopadhyay SS, Samanta AN, Chem. Eng. Sci., 170, 58 (2017)
Lee A, Wolf M, Kromer N, Mumford K, Nicholas N, Kentish S, Stevens G, Int. J. Greenh. Gas Con., 36, 27 (2015)
Shen SF, Feng XX, Ren SF, Energy Fuels, 27(10), 6010 (2013)
Kim YE, Choi JH, Nam SC, Yoon YI, J. Ind. Eng. Chem., 18(1), 105 (2012)
Jo H, Lee MG, Kim B, Song HJ, Gil H, Park J, J. Chem. Eng. Data, 57(12), 3624 (2012)
Thee H, Suryaputradinata YA, Mumford KA, Smith KH, da Silva G, Kentish SE, Stevens GW, Chem. Eng. J., 210, 271 (2012)
Cullinane JT, Rochelle GT, Chem. Eng. Sci., 59(17), 3619 (2004)
Ma'mun S, Dindore VY, Svendsen HF, Ind. Eng. Chem. Res., 46(2), 385 (2007)
Mumford KA, Smith KH, Anderson CJ, Shen SF, Tao WD, Suryaputradinata YA, Qader A, Hooper B, Innocenzi RA, Kentish SE, Stevens GW, Energy Fuels, 26(1), 138 (2012)
Comite A, Costa C, Felice RD, Pagliai P, Vitiello D, Korean J. Chem. Eng., 32(2), 239 (2015)
Ramazani R, Samsami A, Jahanmiri A, Van der Bruggen B, Mazinani S, Int. J. Greenh. Gas Con., 51, 29 (2016)
Mazinani S, Ramazani R, Samsami A, Jahanmiri A, van der Buggen B, Darvishmanesh S, Fluid Phase Equilib., 396, 28 (2015)
Ramazani R, Mazinani S, Jahanmiri A, Darvishmanesh S, Van der Bruggen B, J. Taiwan Inst. Chem. E., 65, 341 (2016)
Ramezani R, Mazinani S, Di Felice R, Van der Bruggen B, J. Nat. Gas Sci. Eng., 45, 599 (2017)
Ramezani R, Mazinani S, Di Felice R, J. Environ. Chem. Eng., 6, 3262 (2018)
Taib M, Murugesan T, Chem. Eng. J., 182, 56 (2012)
Zhang F, Fang CG, Wu YT, Wang YT, Li AM, Zhang ZB, Chem. Eng. J., 160(2), 691 (2010)
Singh P, Niederer J, Versteeg G, Int. J. Greenh. Gas Con., 1, 5 (2007)
Singh P, Niederer JPM, Versteeg GF, Chem. Eng. Res. Des., 87(2A), 135 (2009)
Sutar PN, Vaidya PD, Kenig EY, Chem. Eng. Sci., 100, 234 (2013)
Lu BH, Wang XQ, Xia YF, Liu N, Li SJ, Li W, Energy Fuels, 27(10), 6002 (2013)
Portugal AF, Magalhaes FD, Mendes A, Chem. Eng. Sci., 63(13), 3493 (2008)
Penders-van Elk NJMC, Fradette S, Versteeg GF, Chem. Eng. J., 259, 682 (2015)
Sutar PN, Jha A, Vaidya PD, Kenig EY, Chem. Eng. J., 207, 718 (2012)
Lee J, Otto I, J. Appl. Chem. Bio. Technol., 26, 541 (1976)
Song J, Yoon J, Lee H, Lee K, J. Chem. Eng. Data, 45, 497 (1996)
Shen K, Li P, J. Chem. Eng. Data, 37, 96 (1992)
Tosh J, Field J, Benson H, Haynes W, U. S. Bureau Mines Rept. Invest., 5484, 23 (1959)
Choi SY, Nam SC, Yoon YI, Park KT, Park SJ, Ind. Eng. Chem. Res., 53(37), 14451 (2014)
Kim I, Svendsen HF, Ind. Eng. Chem. Res., 46(17), 5803 (2007)
Kim M, Song HJ, Lee MG, Jo HY, Park JW, Ind. Eng. Chem. Res., 51(6), 2570 (2012)
Song HJ, Lee MG, Kim H, Gaur A, Park JW, J. Chem. Eng. Data, 56(4), 1371 (2011)
Wu ZK, Huang ZL, Zhang Y, Qin YH, Ma JY, Luo YB, Chem. Eng. J., 295, 64 (2016)
Kang D, Park S, Jo H, Min J, Park J, J. Chem. Eng. Data, 58(6), 1787 (2013)
Kumar G, Mondal TK, Kundu M, J. Chem. Eng. Data, 57(3), 670 (2012)
Yang ZY, Soriano AN, Caparanga AR, Li MH, J. Chem. Thermodyn., 42(5), 659 (2010)
Mazinani S, Samsami A, Jahanmiri A, Sardarian A, J. Chem. Eng. Data, 56(7), 3163 (2011)
Dash S, Bandyopadhyay S, J. Greenh. Gas Con., 44, 227 (2016)
Lia H, Moullec Y, Lu J, Chen J, Marcos J, Chen G, Int. J. Greenh. Gas Con., 31, 25 (2014)
Kim Y, Choi J, Nam S, Jeong S, Yoon Y, Energy Fuels, 26(2), 1449 (2012)
Park S, Song HJ, Park J, Fuel Process. Technol., 120, 48 (2014)
Shen SF, Feng XX, Zhao RH, Ghosh UK, Chen AB, Chem. Eng. J., 222, 478 (2013)
Liao CH, Li MH, Chem. Eng. Sci., 57(21), 4569 (2002)
Paul S, Ghoshal AK, Mandal B, Chem. Eng. Sci., 64(7), 1618 (2009)
Sun WC, Yong CB, Li MH, Chem. Eng. Sci., 60(2), 503 (2005)
Vaidya PD, Kenig EY, Chem. Eng. Sci., 62(24), 7344 (2007)
Lin C, Soriano A, Li M, J. Taiwan Inst. Chem. E., 40, 403 (2009)
Pawlak H, Int. J. Greenh. Gas Con., 37, 76 (2015)
Rayer AV, Armugam Y, Henni A, Tontiwachwuthikul P, J. Chem. Eng. Data, 59(11), 3610 (2014)
Mondal BK, Bandyopadhyay SS, Samanta AN, Fluid Phase Equilib., 402, 102 (2015)
Carson JK, Marsh KN, Mather AE, J. Chem. Thermodyn., 32(9), 1285 (2000)
Lee J, Otto F, Mather A, J. Chem. Eng. Data, 17, 465 (1972)
Rho SW, Yoo KP, Lee JS, Nam SC, Son JE, Min BM, J. Chem. Eng. Data, 42(6), 1161 (1997)
Li M, Shen K, Fluid Phase Equilib., 85, 129 (1993)
Liu HL, Xiao M, Luo X, Gao HX, Idem R, Tontiwachwuthikul P, Liang ZW, AIChE J., 63(10), 4465 (2017)
Zhang R, Zhang XW, Yang Q, Yu H, Liang ZW, Luo X, Appl. Energy, 205, 1002 (2017)
Arshad MW, Svendsen HF, Fosbol PL, von Solms N, Thomsen K, J. Chem. Eng. Data, 59(3), 764 (2014)
Li H, Moullec Y, Lu J, Chen J, Marcos J, Chen G, Int. J. Greenh. Gas Con., 31, 25 (2014)
Singto S, Supap T, Idem R, Tontiwachwuthikul P, Tantayanon S, Al-Marri MJ, Benamor A, Sep. Purif. Technol., 167, 97 (2016)
Sema T, Naami A, Idem R, Tontiwachwuthikul P, Ind. Eng. Chem. Res., 50(24), 14008 (2011)
Majchrowicz M, Brilman D, Chem. Eng. Sci., 72, 35 (0212)
Chen X, Rochelle GT, Ind. Eng. Chem. Res., 52(11), 4229 (2013)
Chowdhury F, Okabe H, Yamada H, Onoda M, Fujioka Y, Energy Procedia, 4, 201 (2011)
Hilliard M, Dissertation D, The University of Texas at Austin (2008).
Kim I, Hoff KA, Hessen ET, Haug-Warberg T, Svendsen HF, Chem. Eng. Sci., 64(9), 2027 (2009)
Maneeintr K, Idem RO, Tontiwachwuthikul P, Wee AGH, Ind. Eng. Chem. Res., 49(6), 2857 (2010)
Shariff A, Shaikh M, Aqueous amino acid salts and their blends as efficient absorbents for CO2 capture, Springer, 117 (2017).
Capannelli G, Comite A, Costa C, Di Felice R, Ind. Eng. Chem. Res., 52, 13128 (2013)
Zhao Y, Bian YY, Li H, Guo H, Shen SF, Hang JZ, Guo DF, Energy Fuels, 31(12), 14033 (2017)
Gomez A, Jayakumar A, Mahinpey N, Ind. Eng. Chem. Res., 55(41), 11022 (2016)
L-Histidine; MSDS, Science Lab. http://www.sciencelab.com/msds.php?msdsId=9927189.
Tada Y, Yano N, Takahashi H, Yuzawa K, Ando H, Kubo Y, Nagasawa A, Chin K, Kawamata Y, J. Toxicol. Pathol., 23, 39 (2010)
Glycine; MSDS, Science Lab. http://www.sciencelab.com/msds.php?msdsId=9927179.
L-Glutamine, MSDS, Science Lab. http://www.sciencelab.com/msds.php?msdsId=9924160.
L-Alanine, http://www.cdhfinechemical.com/images/product/msds/132_1508466045_L-Alanine-CASNO-56-41-7-MSDS.pdf.
L-proline, MSDS, Science Lab. http://www.sciencelab.com/msds.php?msdsId=9927237.
Taurine, MSDS, Science Lab. http://www.sciencelab.com/msds.php?msdsId=9925166.
https://pubchem.ncbi.nlm.nih.gov/compound/2-_2-Aminoethylamino_ethanol#section=Top.
https://www.caymanchem.com/msdss/700517m.pdf.
Triethanolamine, MSDS, Science Lab. http://www.sciencelab.com/msds.php?msdsId=9927306.
http://www.sciencelab.com/msds.php?msdsId=9922894.
2-Methylpiperazine https://www.fishersci.com/.
2-(1-Piperazinyl)-ethylamine, http://www.merckmillipore.com/.
Diethanolamine; MSDS, Science Lab.http://www.sciencelab.com/msds.php?msdsId=9923743.
Monoethanolamine; MSDS, Science Lab. http://www.sciencelab.com/msds.php?msdsId=9922885.
Piperazine; MSDS Science Lab. http://www.sciencelab.com/msds.php?msdsId=9926575.
Majchrowicz ME, Kersten S, Brilman W, Ind. Eng. Chem. Res., 53(28), 11460 (2014)
Shen SF, Yang YN, Wang Y, Ren SF, Han JZ, Chen AB, Fluid Phase Equilib., 399, 40 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로