ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 26, 2018
Accepted August 23, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz, Iran 1Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Mobaraki Street, 7518759577 Bushehr, Iran
Korean Journal of Chemical Engineering, November 2018, 35(11), 2207-2219(13), 10.1007/s11814-018-0145-2
downloadDownload PDF

Abstract

Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by CoFe2O4 magnetic nanocomposite for use as a Cr(VI) adsorbent. Both AC/CoFe2O4 composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of CoFe2O4 nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and AC/CoFe2O4 composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life (t1/2) of hexavalent chromium using AC and AC/CoFe2O4 magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and AC/CoFe2O4 magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of CoFe2O4 magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36mg/L to 70mg/L.

References

Jiang X, An QD, Xiao ZY, Zhai SR, Shi Z, Mater. Res. Bull., 102, 218 (2018)
Ahmadi M, Kouhgardi E, Ramavandi B, Korean J. Chem. Eng., 33(9), 2589 (2016)
Liu H, Wang ZM, Li HY, Wang H, Yu RB, Mater. Res. Bull., 100, 302 (2018)
Yu J, Jiang C, Guan Q, Ning P, Gu J, Chen Q, Zhang J, Miao R, Chemosphere, 195, 632 (2018)
Sakulthaew C, Chokejaroenrat C, Poapolathep A, Satapanajaru T, Poapolathep S, Chemosphere, 184, 1168 (2017)
Jobby R, Jha P, Yadav AK, Desai N, Chemosphere, 207, 255 (2018)
Zhou JG, Wang YF, Wang JT, Qiao WM, Long DH, Ling LC, J. Colloid Interface Sci., 462, 200 (2016)
Ranjbar N, Hashemi S, Ramavandi B, Ravanipour M, Environ. Prog. Sustain. Energy (2018), https://doi.org/10.1002/ep.12854.
Basaldella EI, Vazquez PG, Iucolano F, Caputo D, J. Colloid Interface Sci., 313(2), 574 (2007)
Zhao YX, Yang SJ, Ding DH, Chen J, Yang YN, Lei ZF, Feng CP, Zhang ZY, J. Colloid Interface Sci., 395, 198 (2013)
Yu WT, Zhang LY, Wang HY, Chai LY, J. Hazard. Mater., 260, 789 (2013)
Wang W, Chemosphere, 190, 97 (2018)
Enniya I, Rghioui L, Jourani A, Sustain Chem. Pharm., 7, 9 (2018)
Norouzi S, Heidari M, Alipour V, Rahmanian O, Fazlzadeh M, Mohammadi-Moghadam F, Nourmoradi H, Goudarzi B, Dindarloo K, Bioresour. Technol., 258, 48 (2018)
Niazi L, Lashanizadegan A, Sharififard H, J. Clean Prod., 185, 554 (2018)
Gaikwad MS, Balomajumder C, Chemosphere, 184, 1141 (2017)
Senapati KK, Borgohain C, Phukan P, J. Mol. Catal. A-Chem., 339(1-2), 24 (2011)
Srivastava V, Kohout T, Sillanpaa M, J. Environ. Chem. Eng., 4, 2922 (2016)
Wan C, Li J, Carbohydr. Polym., 134, 144 (2015)
Glover TG, Sabo D, Vaughan LA, Rossin JA, Zhang ZJ, Langmuir, 28(13), 5695 (2012)
Qiu W, Yang D, Xu J, Hong B, Jin H, Jin D, Peng X, Li J, Ge H, Wang X, J. Alloy. Compd., 678, 179 (2016)
Darweesh TM, Ahmed MJ, Environ. Toxicol. Pharmacol., 50, 159 (2017)
Pathania D, Sharma A, Siddiqi ZM, J. Mol. Liq., 219, 359 (2016)
Gao Y, Yue QY, Gao BY, Sun YY, Wang WY, Li Q, Wang Y, Chem. Eng. J., 232, 582 (2013)
Ayyappan S, Mahadevan S, Chandramohan P, Srinivasan M, Philip J, Raj B, J. Phys. Chem. C, 114, 6334 (2010)
Rai M, Shahi G, Meena V, Meena R, Chakraborty S, Singh R, Rai B, Resource-Efficient Technol., 2, A63 (2016)
Zhong QQ, Yue QY, Li Q, Gao BY, Xu X, Carbohydr. Polym., 111, 788 (2014)
Ibrahim WM, Hassan AF, Azab YA, Egypt. J. Basic Appl. Sci., 3, 241 (2016)
Hassan AF, Youssef AM, Carbon Let., 15, 57 (2014)
Lopez-Lopez MT, Duran JDG, Delgado A, Gonzalez-Caballero F, J. Colloid Interface Sci., 291(1), 144 (2005)
Fu R, Liu Y, Lou Z, Wang Z, Baig SA, Xu X, J. Taiwan Inst. Chem. Eng., 62, 247 (2016)
Li S, Liu L, Yu Y, Wang G, Zhang H, Chen A, J. Alloy. Compd., 698, 20 (2017)
Foroutan R, Mohammadi R, Ramavandi B, Korean J. Chem. Eng., 35(1), 234 (2018)
Nithya R, Gomathi T, Sudha P, Venkatesan J, Anil S, Kim SK, Int. J. Biol. Macromol., 87, 545 (2016)
Foroutan R, Khoo FS, Ramavandi B, Abbasi S, Desalin. Water Treat., 82, 146 (2017)
Naeimi B, Foroutan R, Ahmadi B, Sadeghzadeh F, Ramavandi B, Mater. Res. Exp., 5, 045501 (2018)
Vieira MGA, Neto AFA, Gimenes ML, da Silva MGC, J. Hazard. Mater., 177(1-3), 362 (2010)
Singh V, Sharma AK, Tripathi DN, Sanghi R, J. Hazard. Mater., 161(2-3), 955 (2009)
Acisli O, Khataee A, Karaca S, Sheydaei M, Ultrason. Sonochem., 31, 116 (2016)
Ghaedi M, Nasab AG, Khodadoust S, Rajabi M, Azizian S, J. Ind. Eng. Chem., 20(4), 2317 (2014)
Gheju M, Balcu I, Mosoarca G, J. Hazard. Mater., 310, 270 (2016)
Barnie S, Zhang J, Wang H, Yin H, Chen H, Chemosphere, 212, 209 (2018)
Ding Z, Wang W, Zhang Y, Li F, Liu JP, J. Alloy. Compd., 640, 362 (2015)
Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
Foroutan R, Esmaeili H, Rishehri SD, Sadeghzadeh F, Mirahmadi S, Kosarifard M, Ramavandi B, Data in Brief, 12, 485 (2017)
Fatehi MH, Shayegan J, Zabihi M, Goodarznia I, J. Environ. Chem. Eng., 5, 1454 (2017)
Freundlich H, Phys. Chem., 57, 385 (1907)
Ramavandi B, Rahbar A, Sahebi S, Desal. Water Treat., 57, 23814 (2016)
Teimouri A, Esmaeili H, Foroutan R, Ramavandi B, Korean J. Chem. Eng., 35(2), 479 (2018)
Rangabhashiyam S, Selvaraju N, J. Mol. Liq., 207, 39 (2015)
Marjanovic V, Lazarevic S, Jankovic-Castvan I, Jokic B, Janackovic D, Petrovic R, Appl. Clay Sci., 80, 202 (2013)
Rajput S, Pittman CU, Mohan D, J. Colloid Interface Sci., 468, 334 (2016)
Maleki A, Hayati B, Naghizadeh M, Joo SW, Ind. Eng. Chem. Res., 28, 211 (2015)
Xiao YZ, Liang HF, Wang ZC, Mater. Res. Bull., 48(10), 3910 (2013)
Periyasamy S, Viswanathan N, New J. Chem., 42, 3371 (2018)
Liu M, Wen T, Wu X, Chen C, Hu J, Li J, Wang X, Dalton Trans., 42, 14710 (2013)
Zhang X, Lv L, Qin YZ, Xu M, Jia XB, Chen ZH, Bioresour. Technol., 256, 1 (2018)
Uslu H, Datta D, Azizian S, J. Mol. Liq., 215, 449 (2016)
Aid A, Amokrane S, Nibou D, Mekatel E, Trari M, Hulea V, Water Sci. Technol., 77, 60 (2018)
Rathnayake SI, Martens WN, Xi YF, Frost RL, Ayoko GA, J. Colloid Interface Sci., 490, 163 (2017)
Abu-Zurayk RA, Al Bakain RZ, Hamadneh I, Al-Dujaili AH, Int. J. Miner. Process., 140, 79 (2015)
Kumar R, Kim SJ, Kim KH, Lee SH, Park HS, Jeon BH, Appl. Geochem., 88, 113 (2018)
Maneechakr P, Karnjanakom S, J. Chem. Thermodyn., 106, 104 (2017)
Yang J, Yu M, Chen W, Ind. Eng. Chem. Res., 21, 414 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로