ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 2, 2018
Accepted July 18, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Template-free preparation of TiO2 microspheres for the photocatalytic degradation of organic dyes

Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman 1Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China 2Department of Pharmacology, Shenyang Medical College, Shenyang City, Liaoning Province 110034, China 3Department of Physics and Nanotechnology, SRM Research Institute, SRM University, Kattankulathur, Tamil Nadu - 603 203, India 4Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea 5Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa
rengaraj@squ.edu.om
Korean Journal of Chemical Engineering, November 2018, 35(11), 2283-2289(7), 10.1007/s11814-018-0122-9
downloadDownload PDF

Abstract

TiO2 microspheres were successfully synthesised by simple solution phase method by using various amount of titanium butoxide as precursor. The prepared TiO2 were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance absorption spectra (UV-DRS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XRD analysis revealed that the as-synthesized TiO2 microsphere poses an anatase phase. The photocatalytic degradation experiments were carried out with three different dyes, such as methylene blue, brilliant black, reactive red-120 for four hours under UV light irradiation. The results show that TiO2 morphology had great influence on photocatalytic degradation of organic dyes. The experimental results of dye mineralization indicated the concentration was reduced by a high portion of up to 99% within 4 hours. On the basis of various characterization of the photocatalysts, the reactions involved to explain the photocatalytic activity enhancement due to the concentration of titanium butoxide and morphology include a better separation of photogenerated charge carriers and improved oxygen reduction inducing a higher extent of degradation of aromatics.

References

Mahmoodi NM, Abdi J, Oveisi M, Asli MA, Vossoughi M, Mater. Res. Bull., 100, 357 (2018)
Khataee AR, Kasiri MB, J. Mol. Catal. A-Chem., 328(1-2), 8 (2010)
Starling MCVM, Castro LAS, Marcelino RBP, Leao MMD, Amorim CC, Environ. Sci. Pollut. Res., 24, 6222 (2017)
Domingues FS, Freitas TKFS, de Almeida CA, de Souza RP, Ambrosio E, Palacio SM, Garcia JC, Environ. Technol., 1 (2017), DOI:10.1080/09593330.2017.1418913.
Jaafarzadeh N, Takdastan A, Jorfi S, Ghanbari F, Ahmadi M, Barzegar G, J. Mol. Liq., 256, 162 (2018)
Souza RP, Freitas TK, Domingues FS, Pezoti O, Ambrosio E, Ferrari-Lima AM, Garcia JC, J. Photochem. Photobiol. A-Chem., 329, 9 (2016)
Asghar A, Raman AAA, Daud WMA, J. Clean Prod., 87, 826 (2015)
Touati A, Hammedi T, Najjar W, Ksibi Z, Sayadi S, J. Ind. Eng. Chem., 35, 36 (2016)
Farouk HU, Raman AAA, Daud WMAW, J. Ind. Eng. Chem., 33, 11 (2016)
Borges ME, Sierra M, Cuevas E, Garcia RD, Esparza P, Sol. Energy, 135, 527 (2016)
Reza M, Kurny ASW, Gulshan F, Appl. Water Sci., 7, 1569 (2017)
Ariyanti D, Maillot M, Gao W, J. Environ. Chem. Eng., 6, 539 (2018)
Behpour M, Foulady-Dehaghi R, Mir N, Sol. Energy, 158, 636 (2017)
Zhao W, He X, Peng Y, Zhang H, Sun D, Wang X, Water Sci. Technol., 75, 1494 (2017)
Khanna A, Shetty VK, Sol. Energy, 99, 67 (2014)
Park S, Kim W, Kim Y, Korean J. Chem. Eng., 34(5), 1500 (2017)
Hamaloglu KO, Sag E, Bilir A, Tuncel A, Mater. Chem. Phys., 207, 359 (2018)
Wang C, Liu H, Liu Y, He GA, Jiang CC, Appl. Surf. Sci., 319, 2 (2014)
Lin CJ, Yang WT, Chou CY, Liou SYH, Chemosphere, 152 (490)
Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
Kubelka P, Munk F, Tech. Phys., 12, 593 (1931)
Kubelka P, J. Opt. Soc. Am., 38, 448 (1948)
Tang H, Prasad K, Sanjines R, Schmid P, Levy F, J. Appl. Phys., 45, 2042 (1994)
Reddy KM, Manorama SV, Reddy AR, Mater. Chem. Phys., 78(1), 239 (2003)
Zhang J, Zhou P, Liu J, Yu J, Phys. Chem. Chem. Phys., 16, 20382 (2014)
Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS, Langmuir, 17(9), 2664 (2001)
Burke AR, Brown CR, Bowling WC, Glaub JE, Kapsch D, Love CM, Whitaker RB, Moddeman WE, J. Surf. Interface Anal., 11, 353 (1988)
Park HA, Liu S, Oh Y, Salvador PA, Rohrer GS, Islam MF, ACS Nano., 11, 2150 (2017)
Wang F, Ho JH, Jiang Y, Amal R, ACS Appl. Mater. Interf., 7, 23941 (2015)
Sharif SH, Aldo AR, Ind. Eng. Chem. Res., 47, 6598 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로