Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 25, 2018
Accepted July 26, 2018
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of chemical input during wet air oxidation pretreatment of rice straw in reducing biomass recalcitrance and enhancing cellulose accessibility
Ex-Chief Scientist & Head, Environmental Biotechnology Division, CSIR-NEERI, Nagpur-440020, Maharashtra, India 1Visvesvaraya National Institute of Technology (VNIT), Nagpur, India
Korean Journal of Chemical Engineering, December 2018, 35(12), 2403-2412(10), 10.1007/s11814-018-0129-2
Download PDF
Abstract
The present study was aimed at evaluating the effect of variable sodium carbonate (Na2CO3) loading during wet air oxidation (WAO) pretreatment of rice straw in reducing biomass recalcitrance. The research study was intended to increase the cellulose recovery, hemicellulose solubilization, lignin removal in the solid fraction and limiting the generation of inhibitors in the liquid fraction while reducing the chemical input. The operating condition of 169 °C, 4 bar, 18 min and 6.5 g/L Na2CO3 loading resulted in maximum cellulose recovery of 82.07% and hemicellulose solubilization and lignin removal of 85.43% and 65.42%, respectively, with a total phenolic content of 0.36 g/L in the liquid fraction. The crystallinity index increased from 47.69 to 51.25 along with enzymatic digestibility with an increase in Na2CO3 loading from 0 to 6.5 g/L as a result of removal of barriers for saccharification via effective cleavage of ether and ester bonds cross-linking the carbohydrates and lignin as indicated by FT-IR spectroscopy. A further increase in the Na2CO3 loading to 9.5 g/L did not significantly increase the sugar release. Thus, it was concluded that 6.5 g/L Na2CO3 during WAO is sufficient to increase the delignification and deacetylation, leading to significant changes in apparent cellulose crystallinity inter alia improvement in cellulose accessibility and digestibility of rice straw.
Keywords
References
Ranjan A, Khanna S, Moholkar VS, Appl. Energy, 103, 32 (2013)
Kaur K, Phutela UG, Paddy Water Environ., 14(1), 113 (2016)
Morone A, Pandey RA, Renew. Sust. Energ. Rev., 37, 21 (2014)
Kim JS, Lee YY, Kim TH, Bioresour. Technol., 199, 42 (2016)
Morone A, Pandey RA, Chakrabarti T, J. Environ. Chem. Eng., 6(3), 3673 (2017)
Yang LF, Cao J, Jin YC, Chang HM, Jameel H, Phillips R, Li ZZ, Bioresour. Technol., 124, 283 (2012)
Singh J, Suhag M, Dhaka A, Carbohydr. Polym., 117, 624 (2015)
Kim I, Lee B, Park JY, Choi SA, Han JI, Carbohydr. Polym., 99, 563 (2014)
Schmidt AS, Thomsen AB, Bioresour. Technol., 64(2), 139 (1998)
Salehi SMA, Karimi K, Behzad T, Poornejad N, Energy Fuels, 26(12), 7354 (2012)
Morone A, Sharma G, Sharma A, Chakrabarti T, Pandey RA, Renew. Energy, 120, 88 (2018)
Sluiter J, Sluiter A, NREL, NREL/TP-510-48087, 1 (2011).
Foyle T, Jennings L, Mulcahy P, Bioresour. Technol., 98(16), 3026 (2007)
Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T, Biotechnol. Biofuels, 1(1), 1 (2008)
Ainsworth EA, Gillespie KM, Nature Protocols, 2(4), 875 (2007)
Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H, Biotechnol. Biofuels, 6(1), 1 (2013)
https://www.alibaba.com/ (Last assessed on June 20, 2018).
Jonsson LJ, Martin C, Bioresour. Technol., 199, 103 (2016)
Bjerre AB, Schmidt AS, Risø-R-967(EN), Risø National Laboratory, Roskilde, Denmark (1997).
Morone A, Chakrabarti T, Pandey RA, Cellulose, 24(11), 4885 (2017)
Morone A, Pandey RA, Chakrabarti T, Ind. Crop. Prod., 99, 7 (2017)
Gupta R, Lee YY, Bioresour. Technol., 101(21), 8185 (2010)
Elzaawely AA, Maswada HF, El-Sayed MEA, Ahmed ME, Int. Lett. Natural Sci., 64, 1 (2017)
Ximenes E, Kim Y, Ladisch MR, In: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, Wiley, 39 (2013).
Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH, Carbohydr. Res., 340(15), 2376 (2005)
He YF, Pang YZ, Liu YP, Li XJ, Wang KS, Energy Fuels, 22(4), 2775 (2008)
Adapa PK, Karunakaran C, Tabil LG, Schoenau GJ, The Canadian Society for Bioengineering: Prince Edward Island, Canada, 12 (2009).
Kim SB, Lee SJ, Lee JH, Jung YR, Thapa LP, Kim JS, Um Y, Park C, Kim SW, Biotechnol. Biofuels, 6(1), 1 (2013)
Banerjee S, Sen R, Morone A, Chakrabarti T, Pandey RA, Mudliar S, Dyn. Biochem. Process Biotechnol. Mol. Biol., 6(2), 43 (2012)
Ko JK, Bak JS, Jung MW, Lee HJ, Choi IG, Kim TH, Kim KH, Bioresour. Technol., 100(19), 4374 (2009)
Mirmohamadsadeghi S, Chen Z, Wan CX, Bioresour. Technol., 209, 386 (2016)
Steam tables, http://www.tlv.com/global/TI/calculator/steam-table (accessed January 15, 2018).
Jin YC, Huang T, Geng WH, Yang LF, Bioresour. Technol., 137, 294 (2013)
Sindhu R, Binod P, Janu KU, Sukumaran RK, Pandey A, World J. Microbiol. Biotechnol., 28(2), 473 (2012)
Domanski J, Borowski S, Marchut-Mikolajczyk O, Kubacki P, Biomass Bioenergy, 91, 91 (2016)
Raeisi SM, Tabatabaei M, Ayati B, Ghafari A, Mood SH, Waste Biomass Valor., 7(1), 97 (2016)
Kaur K, Phutela UG, Paddy Water Environ., 14(1), 113 (2016)
Morone A, Pandey RA, Renew. Sust. Energ. Rev., 37, 21 (2014)
Kim JS, Lee YY, Kim TH, Bioresour. Technol., 199, 42 (2016)
Morone A, Pandey RA, Chakrabarti T, J. Environ. Chem. Eng., 6(3), 3673 (2017)
Yang LF, Cao J, Jin YC, Chang HM, Jameel H, Phillips R, Li ZZ, Bioresour. Technol., 124, 283 (2012)
Singh J, Suhag M, Dhaka A, Carbohydr. Polym., 117, 624 (2015)
Kim I, Lee B, Park JY, Choi SA, Han JI, Carbohydr. Polym., 99, 563 (2014)
Schmidt AS, Thomsen AB, Bioresour. Technol., 64(2), 139 (1998)
Salehi SMA, Karimi K, Behzad T, Poornejad N, Energy Fuels, 26(12), 7354 (2012)
Morone A, Sharma G, Sharma A, Chakrabarti T, Pandey RA, Renew. Energy, 120, 88 (2018)
Sluiter J, Sluiter A, NREL, NREL/TP-510-48087, 1 (2011).
Foyle T, Jennings L, Mulcahy P, Bioresour. Technol., 98(16), 3026 (2007)
Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T, Biotechnol. Biofuels, 1(1), 1 (2008)
Ainsworth EA, Gillespie KM, Nature Protocols, 2(4), 875 (2007)
Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H, Biotechnol. Biofuels, 6(1), 1 (2013)
https://www.alibaba.com/ (Last assessed on June 20, 2018).
Jonsson LJ, Martin C, Bioresour. Technol., 199, 103 (2016)
Bjerre AB, Schmidt AS, Risø-R-967(EN), Risø National Laboratory, Roskilde, Denmark (1997).
Morone A, Chakrabarti T, Pandey RA, Cellulose, 24(11), 4885 (2017)
Morone A, Pandey RA, Chakrabarti T, Ind. Crop. Prod., 99, 7 (2017)
Gupta R, Lee YY, Bioresour. Technol., 101(21), 8185 (2010)
Elzaawely AA, Maswada HF, El-Sayed MEA, Ahmed ME, Int. Lett. Natural Sci., 64, 1 (2017)
Ximenes E, Kim Y, Ladisch MR, In: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, Wiley, 39 (2013).
Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH, Carbohydr. Res., 340(15), 2376 (2005)
He YF, Pang YZ, Liu YP, Li XJ, Wang KS, Energy Fuels, 22(4), 2775 (2008)
Adapa PK, Karunakaran C, Tabil LG, Schoenau GJ, The Canadian Society for Bioengineering: Prince Edward Island, Canada, 12 (2009).
Kim SB, Lee SJ, Lee JH, Jung YR, Thapa LP, Kim JS, Um Y, Park C, Kim SW, Biotechnol. Biofuels, 6(1), 1 (2013)
Banerjee S, Sen R, Morone A, Chakrabarti T, Pandey RA, Mudliar S, Dyn. Biochem. Process Biotechnol. Mol. Biol., 6(2), 43 (2012)
Ko JK, Bak JS, Jung MW, Lee HJ, Choi IG, Kim TH, Kim KH, Bioresour. Technol., 100(19), 4374 (2009)
Mirmohamadsadeghi S, Chen Z, Wan CX, Bioresour. Technol., 209, 386 (2016)
Steam tables, http://www.tlv.com/global/TI/calculator/steam-table (accessed January 15, 2018).
Jin YC, Huang T, Geng WH, Yang LF, Bioresour. Technol., 137, 294 (2013)
Sindhu R, Binod P, Janu KU, Sukumaran RK, Pandey A, World J. Microbiol. Biotechnol., 28(2), 473 (2012)
Domanski J, Borowski S, Marchut-Mikolajczyk O, Kubacki P, Biomass Bioenergy, 91, 91 (2016)
Raeisi SM, Tabatabaei M, Ayati B, Ghafari A, Mood SH, Waste Biomass Valor., 7(1), 97 (2016)