ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 23, 2018
Accepted October 11, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Improvement of sugar recovery from Sida acuta (Thailand Weed) by NaOH pretreatment and application to bioethanol production

Department of Biology, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand 1Center for Agricultural Biotechnology, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Muang, Phitsanulok 65000, Thailand 2Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-gil, Jongno-gu, Seoul 03016, Korea 3Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea
kimsw@korea.ac.kr
Korean Journal of Chemical Engineering, December 2018, 35(12), 2413-2420(8), 10.1007/s11814-018-0170-1
downloadDownload PDF

Abstract

Sida acuta, a common type of weed in Thailand, contains relatively high cellulose (42.7%) content. We pretreated NaOH to improve glucose recovery from S. acuta. The effect of pretreatment temperature and NaOH concentration was fundamentally investigated based on hydrolysis efficiency with recovery of solid fraction. The pretreatment condition was determined to be 3% NaOH at 60 °C for 9 h, which showed the highest glucose recovery. The hydrolysates obtained by enzymatic hydrolysis of S. acuta were applied to the fermentation of Saccharomyces cerevisiae K35, and a theoretical yield of 97.6% was achieved at 18 h. This indicated that the hydrolysates medium without detoxification had no negative effects on the fermentation. The production of biomass into bioethanol was evaluated based on the material balance of 1,000 g basis. Following this estimation, approximately 28 g and 110 g bioethanol could be produced by untreated and pretreated S. acuta, respectively, and this production was improved about 3.9 fold by NaOH pretreatment. These results again show the importance of pretreatment in biorefinery process.

References

Park YC, Kim JS, Korean J. Chem. Eng., 34(2), 346 (2017)
Hill S, Hanson S, Today in energy: Ethanol plant production of fuel ethanol, U.S. Energy Information Administration, https://www.eia.gov/ (2018).
Yoo CG, Nghiem NP, Kim TH, Korean J. Chem. Eng., 33(10), 2863 (2016)
Lee MJ, Kim JY, Korean J. Chem. Eng., 34(6), 1604 (2017)
Regmi S, Yoo HY, Choi YH, Choi YS, Yoo JC, Kim SW, Biotechnol. J., 12, 170011 (2017)
Abbasi T, Abbasi SA, Renew. Sust. Energ. Rev., 14, 919 (2010)
Premjet S, Pumira B, Premjet D, BioResources, 8, 70 (2013)
Siripong P, Duangporn P, Takata E, Tsutsumi Y, Bioresour. Technol., 203, 303 (2016)
Das SP, Ravindran R, Ghosh A, Deka D, Das D, Jawed M, Fontes CMGA, Goyal A, Environ. Prog. Sustain Energy, 33, 1396 (2014)
Kumar A, Singh LK, Ghosh S, Bioresour. Technol., 100(13), 3293 (2009)
Zhao XB, Zhang LH, Liu DH, Bioresour. Technol., 99(9), 3729 (2008)
Gupta R, Khasa YP, Kuhad RC, Carbohydr. Polym., 84, 1103 (2011)
Naseeruddin S, Yadav KS, Sateesh L, Manikyam A, Desai S, Rao LV, Bioresour. Technol., 136, 542 (2013)
Chandel AK, Narasu ML, Chandrasekhar G, Manikyam A, Rao LV, Bioresour. Technol., 100(8), 2404 (2009)
Chandel A, Chandrasekhar G, Lakshmi Narasu M, Venkateswar Rao L, Sugar Tech., 12, 125 (2010)
Scordia D, Cosentino SL, Jeffries TW, Bioresour. Technol., 101(14), 5358 (2010)
Siripong P, Duangporn P, Takata E, Tsutsumi Y, Bioresour. Technol., 203, 303 (2016)
Komolwanich T, Prasertwasu S, Khumsupan D, Tatijarern P, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S, Mater. Res. Innov., 20, 259 (2016)
Zhang B, Shahbaz A, Wang L, Whitmore A, Riddick BA, BioResources, 7, 2848 (2012)
Zhang B, Shahbazi A, Wang L, AJEAS, 3, 328 (2010)
Kim CK, Choi HS, Lee SJ, Lee JH, Lee JH, Yoo HY, Han SO, Kim SW, Process Biochem., 65, 130 (2018)
Behera S, Arora R, Nandhagopal N, Kumar S, Renew. Sust. Energ. Rev., 36, 91 (2014)
Zhao X, Zhang L, Liu D, Biofuels, Bioprod. Biorefin., 6, 465 (2012)
Di Girolamo G, Bertin L, Capecchi L, Ciavatta C, Barbanti L, Biomass Bioenergy, 71, 318 (2014)
Yoo HY, Lee JH, Kim DS, Lee JH, Lee SK, Lee SJ, Park C, Kim SW, J. Ind. Eng. Chem., 51, 303 (2017)
Fockink DH, Maceno MAC, Ramos LP, Bioresour. Technol., 187, 91 (2015)
Xu J, Cheng JJ, Sharma-Shivappa RR, Burns JC, Energy Fuels, 24, 2113 (2010)
Rawat R, Kumbhar BK, Tewari L, Ind. Crop. Prod., 44, 220 (2013)
Chaudhary G, Singh LK, Ghosh S, Bioresour. Technol., 124, 111 (2012)
Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrere H, Energy, 55, 449 (2013)
Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrere H, Bioresour. Technol., 144, 149 (2013)
Selig M, Weiss N, Ji Y, Laboratory Analytical Procedure NREL/TP-510-42629, National Renewable Energy Laboratory (2008).
Jung DU, Yoo HY, Kim SB, Lee JH, Park C, Kim SW, J. Ind. Eng. Chem., 25, 145 (2015)
Jung YR, Shin HY, Yoo HY, Um Y, Kim SW, Korean J. Chem. Eng., 29(7), 925 (2012)
Yang SJ, Yoo HY, Choi HS, Lee JH, Park C, Kim SW, Chem. Eng. J., 275, 227 (2015)
Yoo HY, Yang X, Kim DS, Lee SK, Lotrakul P, Prasongsuk S, Punnapayak H, Kim SW, Biotechnol. Bioproc. Eng., 21, 733 (2016)
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Laboratory Analytical Procedure NREL/TP-510-42618, National Renewable Energy Laboratory (2012).
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Laboratory Analytical Procedure NREL/TP-510-42622, National Renewable Energy Laboratory (2008).
Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D, Laboratory Analytical Procedure NREL/TP-510-42619, National Renewable Energy Laboratory (2008).
Kim SB, Lee JH, Oh KK, Lee SJ, Lee JY, Kim JS, Kim SW, Biotechnol. Bioproc. Eng., 16, 725 (2011)
Avci A, Saha BC, Dien BS, Kennedy GJ, Cotta MA, Bioresour. Technol., 130, 603 (2013)
Kim SB, Lee SJ, Lee JH, Jung YR, Thapa LP, Kim JS, Um Y, Park C, Kim SW, Biotechnol. Biofuels, 6, 109 (2013)
Modenbach AA, Nokes SE, Biotechnol. Bioeng., 109(6), 1430 (2012)
Mohsenzadeh A, Jeihanipour A, Karimi K, Taherzadeh MJ, J. Chem. Technol. Biotechnol., 87(8), 1209 (2012)
Ruangmee A, Sangwichien C, Energy Conv. Manag., 73, 381 (2013)
Wang ZY, Xu JL, Pandey P, Cheng JJ, Li RY, Qu RD, Energy Fuels, 26(5), 3054 (2012)
Xu JL, Cheng JJ, Bioresour. Technol., 102(4), 3861 (2011)
Kim I, Han JI, Biomass Bioenergy, 46, 210 (2010)
Zhang Y, Liu YY, Xu JL, Yuan ZH, Zhuang XS, BioResources, 7, 345 (2011)
Iberahim NI, Jahim JM, Harun S, Nor MTM, Hassan O, Int. J. Chem. Eng. Appl., 3, 101 (2013)
Haque MA, Barman DN, Kim MK, Yun HD, Cho KM, J. Sci. Food Agric., 96, 1790 (2016)
Lee SH, Teramoto Y, Endo T, Bioresour. Technol., 100(1), 275 (2009)
Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF, J. Chem. Technol. Biotechnol., 82(4), 340 (2007)
Klinke HB, Thomsen AB, Ahring BK, Appl. Microbiol. Biotechnol., 66(1), 10 (2004)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로