ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 26, 2018
Accepted July 26, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Surface treatment of sol-gel bioglass using dielectric barrier discharge plasma to enhance growth of hydroxyapatite

1Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt 2Physics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt 3Physics Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
Korean Journal of Chemical Engineering, December 2018, 35(12), 2452-2463(12), 10.1007/s11814-018-0131-8
downloadDownload PDF

Abstract

Surface treatment of sol-gel bioglass is required to increase its biomedical applications. In this study, a dielectric barrier discharge (DBD) plasma treatment in atmospheric pressure was performed on the surface of [SiO2- CaO-P2O5-B2O3] sol-gel derived glass. The obtained bioglass was treated by plasma using discharge current 12mA with an exposure period for 30 min. The type of discharge can be characterized by measuring the discharge current and applied potential waveform and the power dissipation. Apatite formation on the surface of the DBD-treated and untreated samples after soaking in simulated body fluid (SBF) at 37 °C is characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), inductively coupled plasma (ICP-OES) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). We observed a marked increase in the amount of apatite deposited on the surface of the treated plasma samples than those of the untreated ones, indicating that DBD plasma treatment is an efficient method and capable of modifying the surface of glass beside effectively transforming it into highly bioactive materials.

References

Hench LL, Jones JR, Front Bioeng Biotechnol., 3, 194 (2015)
Stani V, Clinical Applications of Biomaterials, Springer International Publishing AG (2017).
Han I, Baik HK, Shin SW, Lee IS, Surf. Coat. Technol., 202, 5746 (2008)
Erasmus EP, Johnson OT, Sigalas I, Massera J, Scientific Reports, 7, 6046 (2017)
Mackovic M, Hppe A, Detsch R, Mohn D, Stark WJ, Spiecker E, Boccaccini AR, J. Nanopart. Res., 14, 966 (2012)
Lemos EM, Patricio PS, Pereira MM, Quimica Nova, 39, 462 (2016)
Tohamy KM, Soliman IE, Motawea AE, Aboelnasr MA, Nature Sci., 13, 145 (2015)
Yue T, Pang L, Wang D, J. Non-Cryst. Solids, 476, 25 (2017)
Shaikh S, Kedia S, Singh AK, Sharma K, Sinha S, J. Laser Applications, 29, 022004 (2017)
Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A, Plasm. Process. Polym., 5, 503 (2008)
Morgan NN, Int. J. Phys. Sci., 4, 885 (2009)
Morent R, De Geyter N, Desmet T, Dubruel P, Leys C, Plasma Process. Polym., 8, 171 (2011)
Yousefi HR, Ghoranneviss M, Tehrani AR, Khamseh S, Surf. Interface Anal., 35, 1015 (2003)
Shishoo LR, The 6th. Int. Conf. on Tex. Coat. & Lam., Dusseldorf, 35 (1996).
Pieter C, Morent R, De Geyter N, Advances in Bioengineering, chapter 5, IntechOpen pub., 117 (2015).
Labay C, Canal C, Rodriguez C, Caballero G, Canal JM, Appl. Surf. Sci., 283, 269 (2013)
Labay C, Canal JM, Canal C, Plasma Process. Polym., 9, 165 (2012)
Simon A, Dinu O, Papiu M, Simon V, Mocuta H, Papp J, Anghel SD, Rom. Journ. Phys., 57, 1392 (2012)
Luo H, Xiong G, Ren K, Raman S, Liu Z, Li Q, Ma C, Li D, Wan Y, Surf. Coat. Technol., 242, 1 (2014)
Qu X, Cui W, Yang F, Changchun M, Hong S, Jianzhong B, Shenguo W, Biomaterials, 28, 9 (2007)
Lebourg M, Anton JS, Ribelles JLG, Compos. Sci. Technol., 70, 1796 (2010)
Morgan NN, Metawa A, Garamoon A, Indian J. Phys., 85, 1631 (2011)
Ciceo RL, Trandafir DL, Radu T, Ponta O, Simon V, Ceram. Int., 40, 9517 (2014)
Kokubo T, Takadama H, Biomaterials, 27, 2907 (2006)
Hesaraki S, Gholami M, Vazehrad S, Shahrabi S, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 30, 383 (2010)
Gadkari S, Gua S, Phys. Plasmas, 24, 053517 (2017)
Brandenburg R, Plasma Sources Sci. Technol., 27, 1 (2018)
Weili F, Sheng Z, Dong L, Liu F, Zhong X, Cui Y, Hao F, Du T, Sci. Rep., 7, 8368 (2017)
Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F, Plasma Sources Sci. Technol., 25, 025013 (2016)
Elabid A, Ying G, Jianju S, Ke D, Jing Z, Plasma Sci. Technol., 18, 346 (2016)
Hao L, Lawrence J, Laser Surface Treatment of Bio-Implant Materials, John Wiley & Sons, Ltd., 23 (2005).
Zhi F, Xiangqun Q, Yuchang Q, Edmund K, IEEE Trans. Plasma Sci., 34, 1216 (2006)
Seung-Woo C, Woo-Beom C, Yun-Hi L, Byeong-Kwon J, J. Korea Phys. Soc., 38, 207 (2001)
Dorozhkin SV, Int. J. Mater. Chem., 2, 19 (2012)
El-Gohary MI, Tohamy KM, El-Okr MM, Ali AF, Soliman IE, Nature Sci., 11, 26 (2013)
Mabrouk M, Selim MM, Beherei H, El-Gohary MI, J. Gen. Eng. Biotechnol., 10, 113 (2012)
Sharma K, Kedia S, Singh AK, Basak CB, Chauhan AK, Basu S, Sinha S, J. Non-Cryst. Solids, 440, 43 (2016)
Mami M, Lucas-Girot A, Oudadesse H, Dorbez-Sridi R, Mezahi F, Dietrich E, Appl. Surf. Sci., 254(22), 7386 (2008)
Lei B, Chen X, Wang Y, Zhao N, Chang D, Fang L, J. Non-Cryst. Solids, 355, 2678 (2009)
Saeed H, Masoud A, Hamid N, Davood S, J. Mater. Sci. -Mater. Med., 21, 695 (2010)
Xiu T, Liu Q, Wang J, J. Solid State Chem., 181, 863 (2008)
Agathopoulos S, Tulyaganov DU, Ventura JG, Kannan S, Karakassides M, Ferreira JM, Biomaterials, 27, 1832 (2006)
Boccaccini AR, Chen Q, Lefebvre L, Gremillard L, Chevalier J, Faraday Discuss., 136, 27 (2007)
Pryce RS, Hench LL, J. Mater. Chem., 14, 2303 (2004)
Ciceo-Lucaceo R, Trandafir D, Radu T, Ponta O, Simon V, Ceram. Int., 40, 9517 (2014)
Ciceo RL, Ardelean I, J. Non-Cryst. Solids, 353, 2020 (2007)
Manupriya KS, Thind K, Singh V, Kumar V, Sharma G, Singh D, Singh D, J. Phys. Chem. Solids, 70, 1137 (2009)
Hesaraki S, Alizadeh M, Nazarian H, Sharifi D, J. Mater. Sci. -Mater. Med., 21, 695 (2010)
Ohtsuki C, Kushitani H, Kokubo T, Kotani S, Yamamuro T, J. Biomed. Mater. Res., 25, 1363 (1991)
Li X, Wang X, He D, Shi J, J. Mater. Chem., 18, 4103 (2008)
Li Z, Al-Jawad M, Siddiqui S, Pasteris JD, Sci. Rep., 5, 16511 (2015)
Combes C, Cazalbou S, Rey C, Minerals, 6(2), 34 (2016)
Boulila S, Oudadesse H, Elfeki H, Kallel R, Lefeuvre B, Mabrouk M, Tounsi S, Mhalla D, Mostafa A, Chaabouni K, Makni-Ayedi F, Barroug A, Boudawara T, Elfeki A, Korean J. Chem. Eng., 33(5), 1659 (2016)
Termine JD, Posner AS, Nature, 211, 268 (1966)
Weiner S, Bar-Yosef O, J. Archaeological Sci., 17, 187 (1990)
Stan GE, Popa AC, Bojin D, Digest J. Nanomaterials Biostructures, 5, 557 (2010)
El Hadad AA, Peon E, Garcia-Galvan FR, Barranco V, Parra J, Jimenez-Morales A, Galvan JC, Materials, 10, 94 (2017)
Rezaei Y, Moztarzadeh F, Shahabi S, Tahriri M, Synth. React. Inorg. Metal-Orga. Nano-Meta. Chem., 44, 692 (2014)
Jingyi L, Huijun Y, Chuanzhong C, RSC Adv., 8, 2015 (2018)
Abdelrahim RA, Badr NA, Baroudi K, J. Inter. Soci. Preve. Comm. Dent., 6, 15 (2016)
Yabutsuka T, Fukushima K, Hiruta T, Takai S, Yao T, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 81, 349 (2017)
Horcas I, Fernandez R, Gomez-Rodrıguez JM, Colchero J, Gomez-Herrero J, Baro AM, Rev. Sci. Instrum., 78, 013705 (2007)
Maria VR, Ramila A, Chem. Mater., 12, 961 (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로