Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 5, 2017
Accepted October 15, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Steam reforming of α-methylnaphthalene as a model compound of biomass tar over Ni-based catalyst for hydrogen-rich gas
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, China
jxiao@seu.edu.cn, jxiaoseu@163.com
Korean Journal of Chemical Engineering, February 2018, 35(2), 394-408(15), 10.1007/s11814-017-0292-x
Download PDF
Abstract
Tar is a barrier to limit the development of biomass gasification. Catalytic steam reforming experiments using α-methylnaphthalene (MNP) as a model tar compound were carried out in the two-stage reactor system (TSR). Based on response surface methodology, the effects of TSR temperatures and the molar ratio of steam to carbon (S/C) on MNP reforming performances were analyzed using the Li-modified Ni-based catalyst (NBC). The results show that the proper introduction of H2 is able to improve significantly the MNP conversion, specially at lower temperatures. Furthermore, it is more appropriate for the modified catalysts by Li and Mg to be loaded in the first reactor due to their significant promotion to hydrocracking reactions, and it is favorable to place the Ni/Al catalyst in the second reactor for H2-rich gas. Additionally, the carbon deposition resistance of the NBC modified by Li exhibits better than that of the NBC modified by Mg.
References
Guan GQ, Kaewpanha M, Hao XG, Abudula A, Renew. Sust. Energ. Rev., 58, 450 (2016)
Josuinkas FM, Quitete CPB, Ribeiro NFP, Souza MMVM, Fuel Process. Technol., 121, 76 (2014)
Balat H, Kirtay E, Int. J. Hydrog. Energy, 35(14), 7416 (2010)
Nipattummakul N, Ahmed II, Kerdsuwan S, Gupta AK, Int. J. Hydrog. Energy, 35(21), 11738 (2010)
Franco C, Pinto F, Gulyurtlu I, Cabrita I, Fuel, 82(7), 835 (2003)
Devi L, Ptasinski KJ, Janssen FJJG, Biomass Bioenerg., 24(2), 125 (2003)
Swierczynski D, Courson C, Kiennemann A, Chem. Eng. Process., 47(3), 508 (2008)
Polychronopoulou K, Giannakopoulos K, Efstathiou AM, Appl. Catal. B: Environ., 111, 360 (2012)
Ozaki J, Takei M, Takakusagi K, Takahashi N, Fuel Process. Technol., 102, 30 (2012)
Zhang YL, Luo YH, Wu WG, Zhao SH, Long YF, Energy Fuels, 28(5), 3129 (2014)
Ashok J, Kawi S, Acs Catal., 4, 289 (2014)
Wang TJ, Chang J, Wu CZ, Fu Y, Chen Y, Biomass Bioenerg., 28(5), 508 (2005)
Furusawa T, Tsutsumi A, Appl. Catal. A: Gen., 278(2), 195 (2005)
Devi L, Ptasinski KJ, Janssen FJJG, Fuel Process. Technol., 86(6), 707 (2005)
Michel R, Lamacz A, Krzton A, Djega-Mariadassou G, Burg P, Courson C, Gruber R, Fuel, 109, 653 (2013)
Zhang RQ, Wang YC, Brown RC, Energy Conv. Manag., 48(1), 68 (2007)
Li D, Nakagawa Y, Tomishige K, Chinese J. Catal., 33, 583 (2012)
Miyazawa T, Kimura T, Nishikawa J, Kado S, Kunimori K, Tomishige K, Catal. Today, 115(1-4), 254 (2006)
Dieuzeide ML, Laborde M, Amadeo N, Cannilla C, Bonura G, Frusteri F, Int. J. Hydrog. Energy, 41(1), 157 (2016)
Yang J, Wang XG, Li L, Shen K, Lu XG, Ding WZ, Appl. Catal. B: Environ., 96(1-2), 232 (2010)
Qi CX, Amphlett JC, Peppley BA, J. Power Sources, 171(2), 842 (2007)
Kuchonthara P, Puttasawat B, Piumsomboon P, Mekasut L, Vitidsant T, Korean J. Chem. Eng., 29(11), 1525 (2012)
Osaki T, Mori T, J. Catal., 204(1), 89 (2001)
Kong LH, Yue BH, Wang XG, Yu F, Zhen Q, Lu XQ, Ding WZ, Chinese J. Process. Eng., 9(2), 403 (2009)
Nguyen XH, Bae W, Gunadi T, Park Y, J. Pet. Sci. Eng., 117, 37 (2014)
Fermoso J, Gil MV, Arias B, Plaza MG, Pevida C, Pis JJ, Rubiera F, Int. J. Hydrog. Energy, 35(3), 1191 (2010)
Deraz NM, Salim HH, El-Aal AA, Mate. Lett., 53, 102 (2002)
Li GH, Hu LJ, Hill JM, Appl. Catal. A: Gen., 301(1), 16 (2006)
Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ, Appl. Catal. A: Gen., 301(1), 9 (2006)
Dewaele O, Froment GF, J. Catal., 184(2), 499 (1999)
Pinilla JL, Arcelus-Arrillaga P, Puron H, Millan M, Fuel, 109, 303 (2013)
Lv X, Xiao J, Du YZ, Shen LH, Zhou YY, Int. J. Hydrog. Energy, 39(36), 20968 (2014)
Parthasarathy P, Narayanan KS, Renew. Energy, 66, 570 (2014)
Shen Y, Yoshikawa K, Renew. Sust. Energ. Rev., 21, 371 (2013)
Oh G, Park SY, Seo MW, Kim YK, Ra HW, Lee JG, Yoon SJ, Renew. Energy, 86, 841 (2016)
Chen L, Hao ZD, Yang TZ, Liu WF, Zhang DC, Int. J. Hydrog. Energy, 39(28), 15474 (2014)
Guczi L, Stefler G, Geszti O, Sajo I, Paszti Z, Tompos A, Schay Z, Appl. Catal. A: Gen., 375(2), 236 (2010)
Verykios XE, Int. J. Hydrog. Energy, 28(10), 1045 (2003)
Wang CZ, Sun NN, Zhao N, Wei W, Sun YH, Sun CG, Liu H, Snape CE, Fuel, 143, 527 (2015)
Josuinkas FM, Quitete CPB, Ribeiro NFP, Souza MMVM, Fuel Process. Technol., 121, 76 (2014)
Balat H, Kirtay E, Int. J. Hydrog. Energy, 35(14), 7416 (2010)
Nipattummakul N, Ahmed II, Kerdsuwan S, Gupta AK, Int. J. Hydrog. Energy, 35(21), 11738 (2010)
Franco C, Pinto F, Gulyurtlu I, Cabrita I, Fuel, 82(7), 835 (2003)
Devi L, Ptasinski KJ, Janssen FJJG, Biomass Bioenerg., 24(2), 125 (2003)
Swierczynski D, Courson C, Kiennemann A, Chem. Eng. Process., 47(3), 508 (2008)
Polychronopoulou K, Giannakopoulos K, Efstathiou AM, Appl. Catal. B: Environ., 111, 360 (2012)
Ozaki J, Takei M, Takakusagi K, Takahashi N, Fuel Process. Technol., 102, 30 (2012)
Zhang YL, Luo YH, Wu WG, Zhao SH, Long YF, Energy Fuels, 28(5), 3129 (2014)
Ashok J, Kawi S, Acs Catal., 4, 289 (2014)
Wang TJ, Chang J, Wu CZ, Fu Y, Chen Y, Biomass Bioenerg., 28(5), 508 (2005)
Furusawa T, Tsutsumi A, Appl. Catal. A: Gen., 278(2), 195 (2005)
Devi L, Ptasinski KJ, Janssen FJJG, Fuel Process. Technol., 86(6), 707 (2005)
Michel R, Lamacz A, Krzton A, Djega-Mariadassou G, Burg P, Courson C, Gruber R, Fuel, 109, 653 (2013)
Zhang RQ, Wang YC, Brown RC, Energy Conv. Manag., 48(1), 68 (2007)
Li D, Nakagawa Y, Tomishige K, Chinese J. Catal., 33, 583 (2012)
Miyazawa T, Kimura T, Nishikawa J, Kado S, Kunimori K, Tomishige K, Catal. Today, 115(1-4), 254 (2006)
Dieuzeide ML, Laborde M, Amadeo N, Cannilla C, Bonura G, Frusteri F, Int. J. Hydrog. Energy, 41(1), 157 (2016)
Yang J, Wang XG, Li L, Shen K, Lu XG, Ding WZ, Appl. Catal. B: Environ., 96(1-2), 232 (2010)
Qi CX, Amphlett JC, Peppley BA, J. Power Sources, 171(2), 842 (2007)
Kuchonthara P, Puttasawat B, Piumsomboon P, Mekasut L, Vitidsant T, Korean J. Chem. Eng., 29(11), 1525 (2012)
Osaki T, Mori T, J. Catal., 204(1), 89 (2001)
Kong LH, Yue BH, Wang XG, Yu F, Zhen Q, Lu XQ, Ding WZ, Chinese J. Process. Eng., 9(2), 403 (2009)
Nguyen XH, Bae W, Gunadi T, Park Y, J. Pet. Sci. Eng., 117, 37 (2014)
Fermoso J, Gil MV, Arias B, Plaza MG, Pevida C, Pis JJ, Rubiera F, Int. J. Hydrog. Energy, 35(3), 1191 (2010)
Deraz NM, Salim HH, El-Aal AA, Mate. Lett., 53, 102 (2002)
Li GH, Hu LJ, Hill JM, Appl. Catal. A: Gen., 301(1), 16 (2006)
Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ, Appl. Catal. A: Gen., 301(1), 9 (2006)
Dewaele O, Froment GF, J. Catal., 184(2), 499 (1999)
Pinilla JL, Arcelus-Arrillaga P, Puron H, Millan M, Fuel, 109, 303 (2013)
Lv X, Xiao J, Du YZ, Shen LH, Zhou YY, Int. J. Hydrog. Energy, 39(36), 20968 (2014)
Parthasarathy P, Narayanan KS, Renew. Energy, 66, 570 (2014)
Shen Y, Yoshikawa K, Renew. Sust. Energ. Rev., 21, 371 (2013)
Oh G, Park SY, Seo MW, Kim YK, Ra HW, Lee JG, Yoon SJ, Renew. Energy, 86, 841 (2016)
Chen L, Hao ZD, Yang TZ, Liu WF, Zhang DC, Int. J. Hydrog. Energy, 39(28), 15474 (2014)
Guczi L, Stefler G, Geszti O, Sajo I, Paszti Z, Tompos A, Schay Z, Appl. Catal. A: Gen., 375(2), 236 (2010)
Verykios XE, Int. J. Hydrog. Energy, 28(10), 1045 (2003)
Wang CZ, Sun NN, Zhao N, Wei W, Sun YH, Sun CG, Liu H, Snape CE, Fuel, 143, 527 (2015)