ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 2, 2016
Accepted October 25, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Improving the CO2 fixation rate by increasing flow rate of the flue gas from microalgae in a raceway pond

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Korean Journal of Chemical Engineering, February 2018, 35(2), 498-502(5), 10.1007/s11814-017-0300-1
downloadDownload PDF

Abstract

Residence time of flue gas bubbles with different solution velocities and the influence of NOX and SO2 from flue gas on pH values of culture solutions were analyzed based on large-scale raceway reactors. Microalgal growth and CO2 fixation rates were also investigated with different gas flow rates. Bubble residence time was ~1.1 s when the solution velocity was 20 cm/s. The NOX and SO2 effects on microalgal growth were negligible, although 66% NOX and 95% SO2 were captured by the microalgal solution. Microalgal biomass productivity increased from 10.3 to 14.1 g/m2/d when flue gas flow rate increased from 20 to 50m3/h. CO2 fixation and microalgae biomass productivity increased further from 26.3 to 31.9 g/m2/d and from 14.1 to 17.1 g/m2/d, respectively, upon increase of flue gas flow rate from 50 to 150m3/h.

References

Maeda K, Owada M, Kimura N, Omata K, Karube I, Fuel Energ. Abstracts, 36, 717 (1995)
Benemann JR, Energy Conv. Manag., 38, S475 (1997)
Benemann JR, Final Report to the US Department of Energy. National Energy Technology Laboratory Apcab (2003).
Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M, Appl. Microbiol. Biotechnol., 82(1), 179 (2009)
Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS, Bioresour. Technol., 102(1), 71 (2011)
Chiu SY, Kao CY, Huang TT, Lin CJ, Ong SC, Chen CD, Chang JS, Lin CS, Bioresour. Technol., 102(19), 9135 (2011)
Rezvani S, Moheimani NR, Bahri PA, Comput. Chem. Eng., 84, 290 (2016)
Sostaric M, Klinar D, Bricelj M, Golob J, Berovic M, Likozar B, New Biotechnol., 29, 325 (2012)
Klofutar B, Golob J, Likozar B, Klofutar C, Zagar E, Poljansek I, Bioresour. Technol., 101(10), 3333 (2010)
Harun R, Singh M, Forde GM, Danquah MK, Renew. Sust. Energ. Rev., 14, 1037 (2010)
Moheimani NR, J. Appl. Phycol., 28, 2139 (2015)
Li SW, Luo SJ, Guo RB, Bioresour. Technol., 136, 267 (2013)
Moazami N, Ashori A, Ranjbar R, Tangestani M, Eghtesadi R, Nejad AS, Biomass Bioenerg., 39, 449 (2012)
Gharagozloo PE, Drewry JL, Collins AM, Dempster TA, Choi CY, James SC, J. Appl. Phycol., 26, 2303 (2014)
Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, Zittelli GC, Bondioli P, Appl. Energy, 102, 101 (2013)
Handler RM, Canter CE, Kalnes TN, Lupton FS, Kholiqov O, Shonnard R, Blowers P, Algal Res. Biomass Biofuels Bioprod., 1, 83 (2012)
Cheng J, Yang ZB, Ye Q, Zhou JH, Cen KF, Bioresour. Technol., 201, 174 (2016)
Waller P, Ryan R, Kacira M, Li PW, Biomass Bioenerg., 46, 702 (2012)
Crowe B, Attalah S, Agrawal S, Waller P, Ryan R, Van Wagenen J, Chavis A, Kyndt J, Kacira M, Ogdenet KL, Huesemann M, Int. J. Chem. Eng., 2012, 1 (2012)
Mendoza JL, Granados MR, de Godos I, Acien FG, Molina E, Banks C, Heaven S, Biomass Bioenerg., 54, 267 (2013)
Yang ZB, Cheng J, Liu JZ, Zhou JH, Cen KF, Bioresour. Technol., 216, 267 (2016)
Yang ZB, Cheng J, Li K, Zhou JH, Cen KF, Bioresour. Technol., 214, 276 (2016)
Cheng J, Yang ZB, Huang Y, Huang L, Hu LZ, Xu DH, Zhou JH, Cen KF, Bioresour. Technol., 190, 235 (2015)
Yang ZB, Cheng J, Lin RC, Zhou JH, Cen KF, Bioresour. Technol., 211, 429 (2016)
Liu CJ, Liang B, Tang SW, Min EZ, Chin. J. Chem. Eng., 21(11), 1206 (2013)
Loubiere K, Castaignede V, Hebrard G, Roustan M, Chem. Eng. Process., 43(6), 717 (2004)
Ramezani M, Kong B, Gao X, Olsen MG, Vigil RD, Chem. Eng. J., 279, 286 (2015)
Kim K, Choi J, Ji Y, Park S, Do H, Hwang C, Lee B, Holzapfel W, Bioresour. Technol., 170, 310 (2014)
Huertas E, Montero O, Lubian LM, Aquacult. Eng., 22, 181 (2000)
Cheng J, Yang ZB, Ye Q, Zhou JH, Cen KF, Bioresour. Technol., 190, 29 (2015)
Raven JA, Photosynth. Res., 77, 155 (2003)
Matsuda Y, Nakajima K, Tachibana M, Photosynth. Res., 109, 191 (2011)
Moheimani NR, Borowitzka MA, Appl. Microbiol. Biotechnol., 90(4), 1399 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로