ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 4, 2017
Accepted October 7, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Comparative study of neodymium recovery from aqueous solutions by polyelectrolytes assisted-ultrafiltration

Physical Chemistry Laboratory of Mineral Materials and Their Applications, National Center for Research in Materials Sciences, Technopark Borj Cedria, P. O. Box 73-8027 Soliman, Tunisia
ennigrou2@gmail.com
Korean Journal of Chemical Engineering, February 2018, 35(2), 518-525(8), 10.1007/s11814-017-0280-1
downloadDownload PDF

Abstract

The Polyelectrolyte-Assisted UltraFiltration technique has demonstrated its effectiveness in the recovery of neodymium from aqueous solutions. In this study, poly(sodium 4-styrenesulfonate) and polyethylene glycol were selected as the complexing agents. The ultrafiltration experiments were operated using a laboratory scale ultrafiltration system equipped with a polyethersulfone membrane. The effects of various parameters such as polyelectrolyte concentration, applied pressure, NaCl concentration, pH and operating time on neodymium retention and permeation flux were studied. It was observed that the better result was obtained with PSS. The maximum retention was observed at 2×10.4 mol L.1 and 3 bars for both polyelectrolytes. The results showed that the retention increased with the increase of pH. The ionic strength effect has shown a retention decrease with the increasing of salt concentration. Finally, the permeate flux declined following the increment in volume concentration factor, the retention remained constant around 98%.

References

Chakhmouradian AR, Wall F, Elements, 8, 333 (2012)
Alam MA, Zuga L, Pecht MG, Ceram. Int., 38, 6091 (2012)
Rivas BL, Sanchez J, Urbano BF, Polym. Int., 65, 255 (2016)
Chi R, Tian J, Weathered crust elution-deposited rare earth ores, Nova Science Publishers, New York (2008).
Abreu RD, Morais CA, Miner. Eng., 23(6), 536 (2010)
Vasudevan S, Sozhan G, Mohan S, Pushpavanam S, Hydrometallurgy, 76, 115 (2005)
Banda R, Jeon H, Lee M, Sep. Purif. Technol., 98, 481 (2012)
Hadjittofi L, Charalambous S, Pashalidis I, J. Rare Earths, 34, 99 (2016)
Chen GE, Sun D, Xu ZL, Adv. Mater. Res., 233, 959 (2011)
Zeng J, He Q, Zhou H, Sun X, Zhang J, Asia-Pacific J. Chem. Eng., 7, 940 (2012)
Norton MV, DiGiano FA, Hallen RT, Water Environ. Res., 69, 244 (1997)
Hammami M, Ennigrou DJ, Naifer KH, Ferid M, Desalin. Water Treat., 56, 2715 (2015)
Hammami M, Ennigrou DJ, Naifer KH, Ferid M, Environ. Prog. Sustain. Energy, 35, 1091 (2016)
Ramachandhran V, Samanta SK, Misra BM, J. Radioanal. Nucl. Chem., 237, 121 (1998)
Chou YH, Choo KH, Chen SS, Yu JH, Peng CY, Li CW, Sep. Purif. Technol., (2017). (in press).
Haktanır C, Ozbelge HO, Bıcak N, Yılmaz L, Sep. Sci. Technol., 1520, Posted Online 22 June (2017).
Huang YF, Du J, Zhang YF, Lawless D, Feng XS, J. Membr. Sci., 514, 229 (2016)
Palencia M, Martinez JM, Arrieta A, J. Sci. Technol. Appl., 2, 65 (2017)
Yu JH, Chou YH, Liang YM, Li CW, Water Sci. Technol., 72, 1096 (2015)
Molinari R, Argurio P, Poerio T, Gullone G, Desalination, 200(1-3), 728 (2006)
Geckeler KE, Bayer E, Spivakov BY, Shkinev VM, Vorob’eva GA, Anal. Chim. Acta, 189, 285 (1986)
Geckeler E, Pure Appl. Chem., 73, 129 (2001)
Geckeler KEGL, Lange G, Eberhardt H, Bayer E, Pure Appl. Chem., 52, 1883 (1980)
RivasBL, Pereira ED, Palencia M, Sanchez J, Prog. Polym. Sci, 36, 294 (2011)
Rivas BL, Moreno-Villoslada I, J. Appl. Polym. Sci., 70(2), 219 (1998)
Korus I, Polimery, 55, 135 (2010)
Al-Hwaiti M, Ibrahim KA, Harrara M, Arabian J. Chem., (2015), Available Online 11 August (2015).
Baharuddin NH, Sulaiman NMN, Aroua MK, J. Environ. Health Sci. Eng., 12, 61 (2014)
Murthy ZVP, Choudhary A, J. Rare Earths, 29, 974 (2011)
Gasser MS, Aly MI, Int. J. Miner. Process., 121, 31 (2013)
Ashour RM, Abdelhamid HN, Abdel-Magied AF, Abdel-Khalek AA, Ali MM, Uheida A, Muhammed M, Zou X, Dutta J, Solvent Extr. Ion Exch., 35, 91 (2017)
Zhu X, Choo KH, Colloids Surf. A: Physicochem. Eng. Asp., 312, 231 (2008)
Chakraborty S, Dasgupta J, Farooq U, Sikder J, Drioli E, Curcio S, J. Membr. Sci., 456, 139 (2014)
Kuncoro EP, Roussy J, Guibal E, Sep. Sci. Technol., 40(1-3), 659 (2005)
Dasgupta J, Singh M, Sikder J, Padarthi V, Chakraborty S, Curcio S, Ecotox. Environ. Safe., 121, 271 (2015)
Canizares P, Perez A, Camarillo R, Mazarro R, J. Membr. Sci., 320(1-2), 520 (2008)
Islamoglu S, Yilmaz L, Desalination, 200(1-3), 288 (2006)
Rivas BL, Pereira ED, Palencia M, Sanchez J, Prog. Polym. Sci, 36, 294 (2011)
Hoffmann H, Kamburova K, Maeda H, Radeva T, Colloids Surf. A: Physicochem. Eng. Asp., 354, 61 (2010)
Tabatabai A, Scamehorn JF, Christian SD, Sep. Sci. Technol., 30(2), 211 (1995)
Juang RS, Shiau RC, J. Membr. Sci., 165(2), 159 (2000)
Ennigrou DJ, Gzara L, Ben Romdhane MR, Dhahbi M, Chem. Eng. J., 155(1-2), 138 (2009)
Zeng JX, Li S, Sun XH, Chen XX, Chem. Eng. Technol., 35(2), 387 (2012)
Dutta BK, Principles of Mass Transfer and Separation Processes, PHI Learning Pvt., Ltd., New Delhi (2007).
Canizares P, de Lucas A, Perez A, Camarillo R, J. Membr. Sci., 253(1-2), 149 (2005)
Zamariotto D, Lakard B, Fievet P, Fatin-Rouge N, Desalination, 258(1-3), 87 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로