Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 5, 2017
Accepted October 7, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Adsorptive separation of carbon dioxide from flue gas using mesoporous MCM-41: A molecular simulation study
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
amitkumar@iitg.ernet.in
Korean Journal of Chemical Engineering, February 2018, 35(2), 535-547(13), 10.1007/s11814-017-0283-y
Download PDF
Abstract
Realistic molecular models of MCM-41 have been developed and used for studying the separation of carbon dioxide from flue gas mixtures using grand canonical Monte Carlo simulations. The simulated X-ray diffraction pattern and surface area of the models are in good agreement with experimental results reported in literature. Adsorption of pure carbon dioxide was studied on the three different models at two different temperatures, 273.2 K and 303.2 K. Isosteric heats of adsorption of CO2 calculated from the simulations were in the range 20-25 kJ/mol, which matches well with reported experimental values. The simulated CO2 adsorption isotherms showed good agreement with experimental isotherms at both the temperatures for two of the models, which were selected for further mixture adsorption studies. Binary CO2/N2 adsorption simulations were performed at different bulk gas compositions, and the selectivities of CO2 over N2 were observed to be in the range 4-10. Further studies on adsorption of ternary and quaternary bulk gas mixtures containing water vapor and O2 in addition to CO2 and N2 did not reveal any significant effect on CO2 adsorption and CO2-N2 selectivity.
Keywords
References
Mason JA, McDonald TM, Bae TH, Bachman JE, Sumida K, Dutton JJ, Kaye SS, Long JR, J. Am. Chem. Soc., 137(14), 4787 (2015)
He YF, Seaton NA, Langmuir, 19(24), 10132 (2003)
He YF, Seaton NA, Langmuir, 22(3), 1150 (2006)
Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992)
Luan ZH, Cheng CF, Zhou WZ, Klinowski J, J. Phys. Chem., 99(3), 1018 (1995)
Amama PB, Lim S, Ciuparu D, Yang YH, Pfefferle L, Haller GL, J. Phys. Chem. B, 109(7), 2645 (2005)
Yun JH, Duren T, Keil FJ, Sexton NA, Langmuir, 18(7), 2693 (2002)
Zhuo S, Huang Y, Hu J, Liu H, Hu Y, Jiang J, J. Phys. Chem., 112, 11295 (2008)
Builes S, Vega LF, J. Phys. Chem., 116, 3017 (2012)
Jing Y, Wei L, Wang YD, Yu YX, Chem. Eng. J., 220, 264 (2013)
Pajzderska A, Gonzalez MA, Mielcarek J, Wasicki J, J. Phys. Chem., 118, 23701 (2014)
Ngoc HL, Schuurman Y, Farrusseng D, Coasne B, J. Phys. Chem., 119, 21547 (2015)
Materials studio, Accerlys Inc., San Diego, U.S.A.
Downs RT, Palmer DC, Am. Mineral., 79, 9 (1994)
Ugliengo P, Sodupe M, Musso F, Bush IJ, Orlando R, Dovesi R, Adv. Mater., 20(23), 4579 (2008)
Loganathan S, Tikmani M, Ghoshal AK, Langmuir, 29(10), 3491 (2013)
Tielens F, Gervais C, Lambert JF, Mauri F, Costa D, Chem. Mater., 20, 3336 (2008)
Mayo SL, Olafson BD, Goddard WA, J. Phys. Chem., 94, 8897 (1990)
Wells BA, Chaffee AL, J. Chem. Theory Comput., 11, 3684 (2015)
Rappe AK, Goddard WA III,, J. Phys. Chem., 95, 3358 (1991)
Connolly ML, J. Appl. Crystallogr., 16, 548 (1983)
Dubbeldam D, Torres-Knoop A, Walton KS, Mol. Simul., 39, 1253 (2013)
MG M Monte Carlo for complex chemical systems (MCCCS) towhee, version 6.2.12. (2010).
Potoff JJ, Siepmann JI, AIChE J., 47, 1676 (2013)
Berendsen HJC, Grigera JR, Straatsma TP, J. Phys. Chem., 91, 6269 (1987)
Zhang L, Siepmann JI, Theor. Chem. Acc., 115, 391 (2006)
Frenkel D, Smit B, Academic Press, San Diego (1996).
Northcott KA, Miyakawa K, Oshima S, Komatsu Y, Perera JM, Stevens GW, Chem. Eng. J., 157(1), 25 (2010)
Oshima S, Perera JM, Northcott KA, Kokusen H, Stevens GW, Komatsu Y, Sep. Sci. Technol., 41(8), 1635 (2006)
Xu YN, Ching WY, Phys. Rev. B, 44, 11048 (1991)
Vlugt TJH, Garcia-Perez E, Dubbeldam D, Ban S, Calero S, J. Chem. Theory Comput., 4, 1107 (2008)
Poursaeidesfahani A, Torres-Knoop A, Rigutto M, Nair N, Dubbeldam D, Vlugt TJH, J. Phys. Chem., 120, 1727 (2016)
Zhou SN, Guo C, Wu ZH, Wang MH, Wang ZJ, Wei SX, Li SR, Lu XQ, Appl. Surf. Sci., 410, 259 (2017)
Yuan B, Wu X, Chen Y, Huang J, Luo H, Deng S, Environ. Sci. Technol., 47, 5474 (2013)
Yang QY, Xue CY, Zhong CL, Chen JF, AIChE J., 53(11), 2832 (2007)
Wang H, Duan YF, Li YN, Xue YA, Liu M, Chem. Eng. J., 300, 230 (2016)
Di Biase E, Sarkisov L, Carbon, 94, 27 (2015)
He YF, Seaton NA, Langmuir, 19(24), 10132 (2003)
He YF, Seaton NA, Langmuir, 22(3), 1150 (2006)
Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992)
Luan ZH, Cheng CF, Zhou WZ, Klinowski J, J. Phys. Chem., 99(3), 1018 (1995)
Amama PB, Lim S, Ciuparu D, Yang YH, Pfefferle L, Haller GL, J. Phys. Chem. B, 109(7), 2645 (2005)
Yun JH, Duren T, Keil FJ, Sexton NA, Langmuir, 18(7), 2693 (2002)
Zhuo S, Huang Y, Hu J, Liu H, Hu Y, Jiang J, J. Phys. Chem., 112, 11295 (2008)
Builes S, Vega LF, J. Phys. Chem., 116, 3017 (2012)
Jing Y, Wei L, Wang YD, Yu YX, Chem. Eng. J., 220, 264 (2013)
Pajzderska A, Gonzalez MA, Mielcarek J, Wasicki J, J. Phys. Chem., 118, 23701 (2014)
Ngoc HL, Schuurman Y, Farrusseng D, Coasne B, J. Phys. Chem., 119, 21547 (2015)
Materials studio, Accerlys Inc., San Diego, U.S.A.
Downs RT, Palmer DC, Am. Mineral., 79, 9 (1994)
Ugliengo P, Sodupe M, Musso F, Bush IJ, Orlando R, Dovesi R, Adv. Mater., 20(23), 4579 (2008)
Loganathan S, Tikmani M, Ghoshal AK, Langmuir, 29(10), 3491 (2013)
Tielens F, Gervais C, Lambert JF, Mauri F, Costa D, Chem. Mater., 20, 3336 (2008)
Mayo SL, Olafson BD, Goddard WA, J. Phys. Chem., 94, 8897 (1990)
Wells BA, Chaffee AL, J. Chem. Theory Comput., 11, 3684 (2015)
Rappe AK, Goddard WA III,, J. Phys. Chem., 95, 3358 (1991)
Connolly ML, J. Appl. Crystallogr., 16, 548 (1983)
Dubbeldam D, Torres-Knoop A, Walton KS, Mol. Simul., 39, 1253 (2013)
MG M Monte Carlo for complex chemical systems (MCCCS) towhee, version 6.2.12. (2010).
Potoff JJ, Siepmann JI, AIChE J., 47, 1676 (2013)
Berendsen HJC, Grigera JR, Straatsma TP, J. Phys. Chem., 91, 6269 (1987)
Zhang L, Siepmann JI, Theor. Chem. Acc., 115, 391 (2006)
Frenkel D, Smit B, Academic Press, San Diego (1996).
Northcott KA, Miyakawa K, Oshima S, Komatsu Y, Perera JM, Stevens GW, Chem. Eng. J., 157(1), 25 (2010)
Oshima S, Perera JM, Northcott KA, Kokusen H, Stevens GW, Komatsu Y, Sep. Sci. Technol., 41(8), 1635 (2006)
Xu YN, Ching WY, Phys. Rev. B, 44, 11048 (1991)
Vlugt TJH, Garcia-Perez E, Dubbeldam D, Ban S, Calero S, J. Chem. Theory Comput., 4, 1107 (2008)
Poursaeidesfahani A, Torres-Knoop A, Rigutto M, Nair N, Dubbeldam D, Vlugt TJH, J. Phys. Chem., 120, 1727 (2016)
Zhou SN, Guo C, Wu ZH, Wang MH, Wang ZJ, Wei SX, Li SR, Lu XQ, Appl. Surf. Sci., 410, 259 (2017)
Yuan B, Wu X, Chen Y, Huang J, Luo H, Deng S, Environ. Sci. Technol., 47, 5474 (2013)
Yang QY, Xue CY, Zhong CL, Chen JF, AIChE J., 53(11), 2832 (2007)
Wang H, Duan YF, Li YN, Xue YA, Liu M, Chem. Eng. J., 300, 230 (2016)
Di Biase E, Sarkisov L, Carbon, 94, 27 (2015)