ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 22, 2017
Accepted October 7, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Performance of inverted organic photovoltaic cells with nitrogen doped TiO2 films by atomic layer deposition

School of Chemical Engineering, Chonnam National University, 300 Youngbong-dong, Gwangju 61186, Korea 1Center for Vacuum, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Daejeon 34113, Korea
kdhh@chonnam.ac.kr
Korean Journal of Chemical Engineering, February 2018, 35(2), 567-573(7), 10.1007/s11814-017-0285-9
downloadDownload PDF

Abstract

Atomic layer deposition (ALD) was used to synthesize titanium oxide (TiO2) film as an electron transport layer (ETL) in inverted organic photovoltaic cells (IOPVs). By adjusting the ALD precursor ratio and deposition temperature, the thickness of the TiO2 film was 5 nm, and its effect on the photovoltaic performances was evaluated. We also investigated the effect of nitrogen doping of TiO2 on the power conversion efficiency (PCE) of the cells. An IOPV cell fabricated with a 0.6%-nitrogen-doped TiO2 (N-TiO2 A) ETL exhibited a PCE of 2.27%, which is a 6% increase compared with an equivalent cell containing an undoped TiO2 ETL. Furthermore, the XPS results confirmed the doping of nitrogen into the samples. The doping improved the electrical properties of the TiO2 films evidenced by the Hall measurements in terms of conductivity, hall electron mobility and carrier density.

References

Chu VB, Park SJ, Park GS, Jeon HS, Hwang YJ, Min BK, Korean J. Chem. Eng., 33(3), 880 (2016)
Pham VHT, Truong NTN, Trinh TK, Lee SH, Park C, Korean J. Chem. Eng., 33(2), 678 (2016)
Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ, Proc. Nat. Ac. Sci., 105, 2783 (2008)
Kim H, Nam S, Jeong J, Lee S, Seo J, Han H, Kim Y, Korean J. Chem. Eng., 31(7), 1095 (2014)
He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell TP, Cao Y, Nature Photonics, 9, 174 (2015)
Zafar M, Yun JY, Kim DH, Korean J. Chem. Eng., 34(5), 1504 (2017)
Rao AD, Karalatti S, Thomas T, Ramamurthy PC, ACS Appl. Mater. Interfaces, 6, 16792 (2014)
Zafar M, Yun JY, Kim DH, Appl. Surf. Sci., 398, 9 (2017)
Cho HH, Cho CH, Kang H, Yu H, Oh JH, Kim BJ, Korean J. Chem. Eng., 32(2), 261 (2015)
Chu VB, Park SJ, Park GS, Jeon HS, Hwang YJ, Min BK, Korean J. Chem. Eng., 33(3), 880 (2016)
Aprilia A, Wulandari P, Suendo V, Herman, Hidayat R, Fujii A, Ozaki M, Sol. Energy Mater. Sol. Cells, 111, 181 (2013)
Vasilopoulou IM, Georgiadou DG, Soultati A, Boukos N, Gardelis S, Palilis LC, Fakis M, et al., Adv. Energy Mater., 4, 140021 (2014)
Kim KD, Lim DC, Seo HO, Lee JY, Seo BY, Lee DJ, Song Y, Cho S, Lim JH, Kim YD, Appl. Surf. Sci., 279, 380 (2013)
Seo HO, Park SY, Shim WH, Kim KD, Lee KH, Jo MY, Kim JH, Lee E, Kim DW, Kim YD, Lim DC, J. Phys. Chem., 115, 21517 (2011)
Cho HS, Shin N, Kim K, Kim B, Kim DH, Synthetic Metals, 207, 31 (2015)
Kim JG, Shi D, Kong KJ, Heo YU, Kim JH, Jo MR, Lee YC, Kang YM, Dou SX, ACS Appl. Mater. Interfaces, 5, 691 (2013)
Cong Y, Zhang J, Chen F, Anpo M, J. Phys. Chem., 111, 6976 (2007)
Su YK, Wang PC, Lin CL, Huang GS, Wei CM, IEEE Electron. Device. Lett., 35, 575 (2014)
Wang IQ, Pan YZ, Huang SS, Ren ST, Li P, Li JJ, Nanotechnology, 22, 025501 (2011)
Gonzalez-Garcia L, Gonzalez-Valls I, Lira-Cantu M, Barranco A, Gonzalez-Elipe AR, Energy Environ. Sci., 4, 3426 (2011)
Song MS, Jeong CH, Kim DH, Sci. Adv. Mater., 8, 75 (2016)
Li G, Zhu R, Yang Y, Nature Photonics, 6, 153 (2012)
de Villers BT, Tassone CJ, Tolbert SH, Schwartz BJ, J. Phys. Chem., 113, 18978 (2009)
Chen S, Manders JR, Tsang SW, So F, J. Mater. Chem., 22, 24202 (2012)
Arunachalam A, Dhanapandian S, Manoharan C, Bououdina M, Ramalingam G, Rajasekaran M, Radhakrishnan M, Ibraheem AM, Ceram. Int., 42, 1136 (2016)
Zhang W, Zhu S, Li Y, Wang F, Vacuum, 82, 328 (2007)
Yoo S, Domercq B, Kippelen B, J. Appl. Phys., 97, 103706 (2005)
Ye ZY, Lu HL, Geng Y, Gu YZ, Xie ZY, Zhang Y, Sun QQ, Ding SJ, Zhang DW, Nanoscale Res. Lett., 8, 108 (2013)
Premkumar J, Chem. Mater., 16, 3980 (2004)
Solovan MN, Brus VV, Maistruk EV, Maryanchuk PD, Inorganic Materials, 50, 40 (2014)
Zhang W, Cai J, Wang D, Wang Q, Wang S, 2010 11th International Conference on (IEEE, 2010), pp. 7-11.
Kawamura M, Abe Y, Yanagisawa H, Sasaki K, Thin Solid Films, 287(1-2), 115 (1996)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로