ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 4, 2017
Accepted October 25, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhancing mechanical properties of epoxy resin using waste lignin and salicylate alumoxane nanoparticles

Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
Korean Journal of Chemical Engineering, February 2018, 35(2), 602-612(11), 10.1007/s11814-017-0301-0
downloadDownload PDF

Abstract

Extracted lignin from wastewater of Kraft process and lab-made salicylate alumoxane (Sal-A) nanoparticles were used as toughening agents in epoxy matrix. Epoxy/lignin composite, epoxy/Sal-A and epoxy/lignin/Sal-Al nanocomposites with various toughening agent loadings were cured with an aromatic diamine hardener. Lignin as an available cheap material and Sal-A, as multifunctional structures, both containing numerous phenolic hydroxyls on their surfaces, were incorporated into epoxy matrix with the aim of improving thermal and some mechanical properties of the resulting composites. Both particles interacted physically (directly) and chemically (indirectly) with the epoxy chains. Simplex lattice mixture design of experiment was applied for formulation development and optimization. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the extracted lignin, Sal-A nanoparticles and synthesized composites. Differential scanning calorimetry (DSC) was used to interpret thermal curing process. The presence of lignin and Sal-A nanoparticles in the epoxy matrix decreased the exothermic peak temperature and total heat of curing reaction. In the presence of 2.5 wt% lignin and 1.875 wt% Sal-A nanoparticles, tensile strength of epoxy composites was 22.23% and 30.92% higher than that of reference (pure) epoxy resin, respectively. Vickers hardness of epoxy composites in the presence of 2.5 wt% lignin and 2.5 wt% Sal-A nanoparticles was increased by 17.41% and 15.39%, accordingly.

References

Hussain F, Hojjati M, Okamoto M, Gorga RE, J. Compos. Mater, 40, 1511 (2006)
Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny J, Polym. Degrad. Stabil., 95, 2126 (2010)
Cosoli P, Scocchi G, Pricl S, Fermeglia M, Microporous Mesoporous Mater., 107, 169 (2008)
Ma H, Xu Z, Tong L, Gu A, Fang Z, Polym. Degrad. Stabil., 91, 2951 (2006)
Pandey JK, Reddy KR, Kumar AP, Singh R, Polym. Degrad. Stabil., 88, 234 (2005)
Kumar AP, Depan D, Tomer NS, Singh RP, Prog. Polym. Sci, 34, 479 (2009)
Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE, Polymer, 45(2), 487 (2004)
Si Y, Guo Z, Liu W, ACS Appl. Mater. Inter., 8, 16511 (2016)
Michels J, Widmann R, Czaderski C, Allahvirdizadeh R, Motavalli M, Compos. Part B-Eng., 77, 484 (2015)
Zhang B, Johlitz M, Lion A, Ernst L, Jansen K, Vu DK, Weiss L, IEEE (2016).
Wang CP, Polymers for Electronic and Photonic Application, Elsevier Science (2013).
El Saeed AM, El-Fattah MA, Dardir M, Prog. Org. Coat., 78, 83 (2015)
El-Tantawy F, Kamada K, Ohnabe H, Mater. Lett., 56, 112 (2002)
Khan R, Azhar MR, Anis A, Alam MA, Boumaza M, Al-Zahrani SM, J. Coat. Technol. Res., 13, 159 (2016)
Gu J, Zhang Q, Li H, Tang Y, Kong J, Dang J, Polym. -Plast. Technol. Eng., 46, 1129 (2007)
Zhang D, Liu W, Tang L, Zhou K, Luo H, Appl. Phys. Lett., 110, 133902 (2017)
Luo H, Zhang D, Jiang C, Yuan X, Chen C, Zhou K, ACS Appl. Mater. Inter., 7, 8061 (2015)
Luo H, Roscow J, Zhou X, Chen S, Han X, Zhou K, Zhang D, Bowen CR, J. Mater. Chem., 5, 7091 (2017)
Gu J, Xu S, Zhuang Q, Tang Y, Kong J, IEEE Trans. Dielectr. Electr. Insul., 24, 784 (2017)
Yang X, Tang L, Guo Y, Liang C, Zhang Q, Kou K, Gu J, Composites A, 101, 237 (2017)
Gu J, Guo Y, Yang X, Liang C, Geng W, Tang L, Li N, Zhang Q, Composites A, 95, 267 (2017)
Zhao W, Kong J, Liu H, Zhuang Q, Gu J, Guo Z, Nanoscale, 8, 19984 (2016)
Halder S, Goyat M, Ghosh P, High Perform. Polym., 28, 697 (2015)
Ghasemi-Kahrizsangi A, Neshati J, Shariatpanahi H, Akbarinezhad E, Prog. Org. Coat., 85, 199 (2015)
Guo J, Song H, Liu H, Luo C, Ren Y, Ding T, Khan MA, Young DP, Liu X, Zhang X, Kong J, Guo Z, J. Mater. Chem., 5, 5334 (2017)
Gu H, Ma C, Liang C, Meng X, Gu J, Guo Z, J. Mater. Chem., 5, 4275 (2017)
Zhou YX, Hosur M, Jeelani S, Mallick PK, J. Mater. Sci., 47(12), 5002 (2012)
Luo H, Ma C, Zhou XF, Chen S, Zhang D, Macromolecules, 50(13), 5132 (2017)
Derakhshan AA, Rajabi L, Powder Technol., 226, 117 (2012)
Barron AR, Obrey SJ, Supra-molecular alkylalumoxanes, US Patent, 6,322,890 B1 (2001).
Halbach TS, Mulhaupt R, Polymer, 49(4), 867 (2008)
Mistry AS, Pham QP, Schouten C, Yeh T, Christenson EM, Mikos AG, Jansen JA, J. Biomed. Mater. Res., 92, 451 (2010)
Rajabi L, Marzban M, Derakhshan AA, Iran. Polym. J., 23, 203 (2014)
Glennie D, McCarthy J, Chemistry of lignin, McGraw-Hill, New York (1962).
Simionescu CI, Rusan V, Macoveanu MM, Cazacu G, Lipsa R, Vasile C, Stoleriu A, Ioanid A, Compos. Sci. Technol., 48, 317 (1993)
Sun RC, Elsevier, Beijing (2010).
Dorrestijn E, Laarhoven LJ, Arends IW, Mulder P, J. Anal. Appl. Pyrolysis, 54, 153 (2000)
Boerjan W, Ralph J, Baucher M, Annu. Rev. Plant Biol., 54, 519 (2003)
Laurichesse S, Averous L, Prog. Polym. Sci, 39, 1266 (2014)
Aouf C, Lecomte J, Villeneuve P, Dubreucq E, Fulcrand, H, Green Chem., 14, 2328 (2012)
Behin J, Sadeghi N, International Journal of Recycling of Organic Waste in Agriculture, 5, 289 (2016).
Mirmohseni-Namin A, Nikafshar S, Mirmohseni F, RSC Adv., 5, 53025 (2015)
Sherman CL, Zeigler RC, Verghese NE, Marks MJ, Polymer, 49(5), 1164 (2008)
Liu W, Zhou R, Goh HLS, Huang S, Lu X, ACS Appl. Mater. Inter., 6, 5810 (2014)
Feldman D, Khoury M, J. Adhes. Sci. Technol., 2, 107 (1988)
Feldman D, Banu D, Natansohn A, Wang J, J. Appl. Polym. Sci., 42, 1537 (1991)
Pandey KK, J. Appl. Polym. Sci., 71(12), 1969 (1999)
Feldman D, Banu D, J. Polym. Sci. A: Polym. Chem., 26, 973 (1988)
Gu J, Dang J, Wu Y, Xie C, Han Y, Polym. -Plast. Technol. Eng., 51, 1198 (2012)
Wetzel B, Haupert F, Zhang MQ, Compos. Sci. Technol., 63, 2055 (2003)
Achilias DS, Karabela MM, Varkopoulou EA, Sideridou ID, J. Macromol. Sci. A., 49, 630 (2012)
Chow WS, Grishchuk S, Burkhart T, Karger-Kocsis J, Thermochim. Acta, 543, 172 (2012)
Petrie E, Epoxy adhesive formulations, McGraw Hill Professional (2005).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로