ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 17, 2017
Accepted December 1, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Kinetics of perovskite-like oxygen carriers for chemical looping air separation

School of Metallurgy, Northeastern University, No 11, Lane 3, Wenhua Road, He Ping District, Shenyang 110819, Liaoning, P. R. China
Korean Journal of Chemical Engineering, March 2018, 35(3), 626-636(11), 10.1007/s11814-017-0332-6
downloadDownload PDF

Abstract

Chemical looping air separation gives an energy-efficient choice for oxygen production. We performed kinetic analysis of YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ oxygen carriers in a CLAS process. TG experiments were conducted with heating rates of 0.5, 1, and 2 oC/min in a thermogravimetric analyzer. Further exploration is required to develop an appropriate oxygen carrier. So, we used the model-free approach, Starink method, to evaluate the apparent activation energy. And, masterplots method was applied to determine the most probable mechanism function. The results show that the distributed activation energies of oxidation/ reduction process are 189.42/286.22 kJ/mol, 197.70/324.87 kJ/mol, 195.41/310.4 kJ/mol, and 192.20/293.53 kJ/mol for YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ oxygen carriers, respectively. Random nucleation and nuclei growth A model is the most suitable for oxidation process. The A model and D are the most suitable for the reduction process. Regarding YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ kinetic, oxygen transfer materials are rate-determined by nucleation and nuclei growth. For eduction kinetic, the gas diffusion stage could also become a dominant step.

References

Shah K, Moghtaderi B, Zanganeh J, Wall T, Fuel, 107, 356 (2013)
Smith AR, Klosek J, Fuel Process. Technol., 70(2), 115 (2001)
Moghtaderi B, Energy Fuels, 24(1), 190 (2010)
Song H, Shah K, Doroodchi E, Wall T, Moghtaderi B, Energy Fuels, 28, 173 (2013)
Song H, Shah K, Doroodchi E, Moghtaderi B, Energy Fuels, 28(1), 163 (2014)
Shulman A, Cleverstam E, Mattisson T, Lyngfelt A, Energy Fuels, 23, 5269 (2009)
Wang K, Yu QB, Xie HQ, Qin Q, Funct. Mater. Lett., 6(2), 135002 (2013)
Song H, Shah K, Doroodchi E, Wall T, Moghtaderi B, Energy Fuels, 28(2), 1284 (2014)
Wang K, Yu QB, Qin Q, Zuo ZL, J. Therm. Anal. Calorim., 119, 2221 (2014)
Wang K, Yu QB, Qin Q, Energy Fuels, 27(9), 5466 (2013)
Ishida M, Yamamoto M, Ohba T, Energy Conv. Manag., 43(9-12), 1469 (2002)
Mattisson T, Leion H, Lyngfelt A, Fuel, 88(4), 683 (2009)
Arjmand M, Azad AM, Leion H, Lyngfelt A, Mattisson T, Energy Fuels, 25(11), 5493 (2011)
Wang K, Yu QB, Qin Q, J. Therm. Anal. Calorim., 112(2), 747 (2013)
Azimi G, Leion H, Ryden M, Mattisson T, Lyngfelt A, Energy Fuels, 27(1), 367 (2013)
Wang K, Yu QB, Qin Q, Zuo Z, J. Therm. Anal. Calorim., 119(3), 2221 (2015)
Zhao K, He F, Huang Z, Wei G, Zheng A, Li H, Zhao Z, Korean J. Chem. Eng., 34(6), 1651 (2017)
Kwak BS, Park NK, Baek JI, Ryu HJ, Kang MS, Korean J. Chem. Eng., 34(7), 1936 (2017)
Motohashi T, Kadita S, Fjellvag H, Karppinen M, Yamauchi H, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 148(1), 196 (2008)
Karppinen M, Yanauchi H, Otani S, Fujita T, Motohashi T, Huang YH, Valkeapaa M, Fjellvag H, Chem. Mater., 18(2), 490 (2006)
Kadita S, Kappinen M, Motohashi T, Yamauchi H, Chem. Mater., 20, 6378 (2008)
Wang S, Hao HS, Zhu BF, Jia JF, Hu X, J. Mater. Sci., 43(15), 5385 (2008)
Hao HS, He QL, Cheng YG, Zhao LM, J. Phys. Chem. Solids, 75(4), 495 (2014)
Zhang SM, MA Dissertation, ZhengZhou University (2011).
Guo LJ, MA Dissertation, ZhengZhou University (2005).
Kozeeva LP, Kameneva MY, Lavrov AN, Podberezskaya NV, Inorg Mater., 49(6), 626 (2013)
Parkkima O, Yamauchi H, Karppinen M, Chem. Mater., 25(4), 599 (2013)
Martin V, Solid State Sci., 7(10), 1163 (2005)
Rasanen S, Motohashi T, Yamauchi H, Kappinen M, J. Solid State Chem., 183, 692 (2010)
Komiyama T, Motohashi T, Masubuchi Y, Kikkawa S, Mater. Res. Bull., 45(10), 1527 (2010)
Rasanen S, Parkkima O, Rautama EL, Yamauchi H, Karppinen M, Solid State Ion., 208, 31 (2012)
Jankovic B, Adnadevic B, Jovanovic J, Thermochim. Acta, 452(2), 106 (2007)
Vyazovkin S, Thermochim. Acta, 355, 145 (2000)
Brown ME, Dollimore D, Galwey AK, Elsevier, Amsterdam., 22, 41 (1980).
Vyazovkin S, Wight CA, Thermachim. Acta, 341, 53 (1999)
Vyazovkin S, Wight CA, J. Phys. Chem. A, 101(39), 7217 (1997)
Coats AW, Redfern JP, Nature, 201, 68 (1964)
Coats AW, Redfern JP, J. Polym. Sci. Part B: Polym. Lett., 3, 917 (1965)
Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
Doyle CD, Anal. Chem., 33, 77 (1961)
Doyle CD, J. Appl. Polym. Sci., 5, 285 (1961)
Doyle CD, Nature, 207, 290 (1965)
Kissinger HE, Anal. Chem., 29, 1702 (1957)
Akahira T, Sunose T, Res. Rep. Chiba. Inst. Technol., 16, 22 (1971)
Vyazovkin SV, Lesnikovich AI, Thermochim. Acta, 34(3), 609 (1988)
Agrawal PK, Thermochim. Acta, 203, 93 (1992)
Starink MJ, Thermochim. Acta, 288(1-2), 97 (1996)
Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N, Thermochim. Acta, 520(1-2), 1 (2011)
Wanjun T, Yuwen L, Hen Z, Cunxin W, Thermochim. Acta, 74, 309 (2003)
Gotor FJ, Criado JM, Malek J, Koga N, J. Phys. Chem. A, 104(46), 10777 (2000)
Wanjun T, Yuwen L, Hen Z, Cunxin W, Thermochim. Acta, 74, 309 (2003)
Jin H, Okamoto T, Ishida M, Energy Fuels, 12(6), 1272 (1998)
Halikia I, Neou-Syngouna P, Kolitsa D, Thermochim. Acta, 320(1-2), 75 (1998)
Perkins C, Lichty P, Weimer AW, Chem. Eng. Sci., 62(21), 5952 (2007)
Pineau A, Kanari N, Gaballah I, Thermochim. Acta, 447(1), 89 (2006)
Hossain MM, de Lasa HI, Chem. Eng. Sci., 65(1), 98 (2010)
Hossain MM, de Lasa HI, Chem. Eng. Sci., 63(18), 4433 (2008)
Sun YQ, Sridhar S, Seetharaman S, Wang H, Liu LL, Wang XD, Zhang ZT, Sci. Rep., 6, 1 (2016)
Hossain MM, de Lasa HI, Chem. Eng. Sci., 65(1), 98 (2010)
Hossain MM, de Lasa HI, Chem. Eng. Sci., 63(18), 4433 (2008)
Hancock JD, Sharp JH, J. Am. Ceram. Soc., 55(2), 74 (1972)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로