ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 26, 2017
Accepted December 1, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Facile precipitation of tin oxide nanoparticles on graphene sheet by liquid phase plasma method for enhanced electrochemical properties

Department of Environmental Education, Mokpo National University, Muan-gun 58554, Korea 1School of Environmental Engineering, University of Seoul, Seoul 02504, Korea 2Department of Dental Materials, Chosun University, Gwangju 61452, Korea 3College of Pharmacy and Research Institute of Life and Pharmaceutical Science, Sunchon National University, Sunchon 57940, Korea 4Department of Environmental Engineering, Sunchon National University, Sunchon 57940, Korea
jsc@sunchon.ac.kr
Korean Journal of Chemical Engineering, March 2018, 35(3), 750-756(7), 10.1007/s11814-017-0333-5
downloadDownload PDF

Abstract

A high-performance lithium ion battery (LIB) electrode was prepared by precipitating tin oxide nanoparticles on graphene powder by the liquid phase plasma (LPP) method. The particles generated by the LPP reaction are spherical SnO2 nanoparticles with a size of 5-10 nm, as confirmed by a variety of analytical devices. The quantity of SnO2 nanoparticles partially aggregated on the graphene sheet surface increases as the initial concentration of the tin precursor increases. The SnO2/graphene nanocomposites (SGNC) electrodes prepared by the LPP method demonstrated improved cycling stability and reversible lithium storage capacity as compared to the bare graphene electrode. The precipitated tin oxide improves the lithium storage capacity, but excess tin oxide nanoparticles rather reduced the cycling stability.

References

Armand M, Tarascon JM, Nature, 451, 652 (2008)
Vu DL, Lee JW, Korean J. Chem. Eng., 33(2), 514 (2016)
Bruce PG, Scrosati B, Tarascon JM, Angew. Chem.-Int. Edit., 47, 2930 (2008)
Cao YL, Xiao LF, Wang W, Choi DW, Nie ZM, Yu JG, Saraf LV, Yang ZG, Liu J, Adv. Mater., 23(28), 3155 (2011)
Ji L, Lin Z, Alcoutlabi M, Zhang X, Energy Environ. Sci., 4, 2682 (2011)
Kim KM, Hepowit LR, Kim JC, Lee YG, Ko JM, Korean J. Chem. Eng., 32(4), 717 (2015)
Park KS, Benayad A, Kang DJ, Doo SG, J. Am. Chem. Soc., 130(45), 14930 (2008)
Huang ZD, Liu XM, Oh SW, Zhang B, Ma PC, Kim JK, J. Mater. Chem., 21, 10777 (2011)
Shen L, Yuan C, Luo H, Zhang X, Xu K, Xia Y, J. Mater. Chem., 20, 6998 (2010)
Venugopal N, Kim WS, Yu T, Korean J. Chem. Eng., 33(4), 1500 (2016)
Lin J, Peng ZW, Xiang CS, Ruan GD, Yan Z, Natelson D, Tour JM, ACS Nano, 7, 6001 (2013)
Wang PZ, Qiao B, Du YC, Li YF, Zhou XS, Dai ZH, Bao JC, J. Phys. Chem. C, 119, 21336 (2015)
Wang B, Wu HB, Zhang L, Lou XW, Angew. Chem.-Int. Edit., 52, 4165 (2013)
Bai H, Li C, Shi GQ, Adv. Mater., 23(9), 1089 (2011)
Wang Y, Zhang HJ, Lu L, Stubbs LP, Wong CC, Lin J, ACS Nano, 4, 4753 (2010)
Chen Y, Song B, Chen RM, Lu L, Xue J, J. Mater. Chem. A, 2, 5688 (2014)
Park H, Yeom DH, Kim J, Lee JK, Korean J. Chem. Eng., 32(1), 178 (2015)
Wang Y, Lee JY, Zeng HC, Chem. Mater., 17, 3899 (2005)
Zhou XS, Yin YX, Wan LJ, Guo YG, J. Mater. Chem., 22, 17456 (2012)
Wei W, Yang SB, Zhou HX, Lieberwirth I, Feng XL, Mullen K, Adv. Mater., 25(21), 2909 (2013)
Gong YJ, Yang SB, Zhan L, Ma LL, Vajtai R, Ajayan PM, Adv. Funct. Mater., 24(1), 125 (2014)
Wang RH, Xu CH, Sun J, Gao L, Yao HL, ACS Appl. Mater. Interfaces, 6, 3427 (2014)
Ebner M, Marone F, Stampanoni M, Wood V, Science, 342(6159), 716 (2013)
Zhou XS, Wan LJ, Guo YG, Adv. Mater., 25(15), 2152 (2013)
Zhou XS, Dai ZH, Liu SH, Bao JC, Guo YG, Adv. Mater., 26(23), 3943 (2014)
Cao M, Zhang M, Xing L, Wang Q, Xue XY, J. Alloy. Compd., 694, 30 (2017)
Sun SH, Jung SC, Korean J. Chem. Eng., 33(3), 1075 (2016)
Lee DJ, Kim SJ, Lee JH, Lee H, Kim HK, Jung SC, Sci. Adv. Mater., 6, 1599 (2014)
Kim SC, Kim BH, Kim SJ, Lee YS, Kim HG, Lee H, Park SH, Jung SC, J. Nanosci. Nanotechnol., 15, 228 (2015)
Lee H, Park SH, Kim SJ, Park YK, Kim BJ, An KH, Ki SJ, Jung SC, Int. J. Hydrog. Energy, 40(1), 754 (2015)
Lee H, Kim BH, Park YK, An KH, Choi YJ, Jung SC, Int. J. Hydrog. Energy, 41(18), 7582 (2016)
Wang D, Li X, Wang J, Yang J, Geng D, Li R, Cai M, Sham TK, Sun X, J. Phys. Chem. C, 116, 22149 (2012)
Zhang C, Peng X, Guo Z, Cai C, Chen Z, Wexler D, Li S, Liu H, Carbon, 50, 1897 (2014)
Tan CH, Cao J, Khattak AM, Cai FP, Jiang B, Yang G, Hu SQ, J. Power Sources, 270, 28 (2014)
Li S, Wang Y, Lai C, Qiu J, Ling M, Martens W, Zhao H, Zhang S, J. Mater. Chem. A, 2, 10211 (2014)
Liu L, An M, Yang P, Zhang J, Scientific Reports, 5, 9055 (2015)
Li L, Kovalchuk A, Tour JM, Nano Res., 7, 1319 (2014)
Wang Y, Chou S, Liu H, Dou S, Carbon, 52, 202 (2013)
Jiang Y, Li Y, Zhou P, Yu S, Sun W, Dou S, ACS Appl. Mater. Interfaces, 7, 26367 (2015)
Xu H, Shi L, Wang Z, Liu J, Zhu J, Zhao Y, Zhang M, Yuan S, ACS Appl. Mater. Interface, 7, 27486 (2015)
Guo Q, Qin X, ECS Solid State Letters, 2, M41 (2014)
Zhu XJ, Zhu YW, Murali S, Stoller MD, Ruoff RS, J. Power Sources, 196(15), 6473 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로