ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 29, 2017
Accepted November 20, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

High Selectivity and removal efficiency of lotus root-based activated carbon towards Fe(III) in La(III) solution

Chemical Department, North University of China, Taiyuan 030051, Shanxi, P. R. China
anfuqiang@nuc.edu.cn
Korean Journal of Chemical Engineering, March 2018, 35(3), 757-763(7), 10.1007/s11814-017-0322-8
downloadDownload PDF

Abstract

Rare earth elements are an important strategic resource. However, a trace of Fe(III) impurity has serious adverse impact on the performance of rare earth materials. We synthesized a novel nitrogen-containing carbon material, ACLR-400, using lotus root as raw materials. The ACLR-400 was characterized by surface area analyzer, elemental analysis and FT-IR. The selectivity and removal efficiency of ACLR-400 towards Fe(III) were also investigated. The BET specific surface area of ACLR-400 was 68.44m2·g-1, and the average pore diameter was 12.54 nm. With abundant nitrogen- containing functional groups and well-developed internal pore structure, ACLR-400 possesses strong adsorption affinity, excellent selectivity and removal efficiency for Fe(III). The adsorption capacity of ACLR-400 towards Fe(III) could reach to 0.46mmol·g-1, selectivity coefficient with respect to La(III) was 8.9, and removal efficiency was 99.61%. The adsorption isotherm data greatly obey the Freundlich isotherm. In addition, ACLR-400 can be regenerated easily and possesses better regeneration ability and reusability.

References

An FQ, Gao BJ, Huang XW, Zhang YQ, Li YB, Xu Y, Zhang ZG, Gao JF, Chen ZP, React. Funct. Polym., 73(1), 60 (2013)
Ou GL, Gao JF, Hu TP, RSC Adv., 5, 71878 (2015)
Tunsu C, Retegan T, Hydrometallurgy, 6, 139 (2016)
Wang YY, Lu HH, Liu YX, Colloids Surf. A: Physicochem. Eng. Asp., 509, 550 (2016)
An FQ, Wu RY, Li M, Environ. Chem. Eng., 5, 1638 (2017)
Wang WS, Li YB, Gao BJ, Eng. Res. Des., 91, 2759 (2013)
Peng WJ, Li HQ, Liu YY, J. Mol. Liq., 230, 496 (2017)
Behdani FN, Rafsanjani AT, Torab-Mostaedi M, Mohammadpour SMAK, Korean J. Chem. Eng., 30(2), 448 (2013)
Khan SB, Marwani HM, Seo J, Bull. Mat. Sci., 38, 327 (2015)
Sui N, Huang K, Lin JY, Li XP, Wang XQ, Xiao CX, Liu HZ, Sep. Purif. Technol., 127, 97 (2014)
Rahman MM, Khan SB, Marwani HM, J. Taiwan Inst. Chem. E., 45, 1964 (2014)
Karim MR, Takehira H, Rahman MM, J. Organomet. Chem., 808, 42 (2016)
Saha PD, Chowdhury S, Datta S, Sanyal SK, Korean J. Chem. Eng., 29(8), 1086 (2012)
Gao B, Meng J, Xu Y, Zhang Y, J. Ind. Eng. Chem., 24, 351 (2015)
Park CM, Han J, Chu KH, Al-Hamadani YAJ, Her N, Heo J, Yoon Y, J. Ind. Eng. Chem., 48, 186 (2017)
Ryoo KS, Jung SY, Sim H, Bull. Korean Chem. Soc., 34, 2753 (2013)
Li B, Yang L, Wang CQ, Chemosphere, 175, 332 (2017)
Han X, Lin HF, Zheng Y, J. Hazard. Mater., 297, 217 (2015)
Lu XC, Jiang JC, Sun K, Bull. Korean Chem. Soc., 35, 103 (2014)
Zhou Y, Apul OG, Karanfil T, Water Res., 79, 57 (2015)
Zhang Z, Feng X, Yue XX, An FQ, Zhou WX, Gao JF, Hu TP, Wei CC, Korean J. Chem. Eng., 32(8), 1564 (2015)
Bhati S, Mahur JS, Dixit S, Bull. Korean Chem. Soc., 34, 569 (2013)
Essandoh M, Wolgemuth D, Pittman CU, Chemosphere, 174, 49 (2017)
Tan ZX, Wang YH, Kasiuliene A, Clean Technol. Environ. Policy., 19, 761 (2017)
Zou ZM, Tang YL, Jiang CH, J. Environ. Chem. Eng., 3, 898 (2015)
Li B, Yang L, Wang CQ, Chemosphere, 175, 332 (2017)
Yun YS, Kim D, Park HH, Synth. Met., 162, 2337 (2012)
Kim JH, Cho S, Bae TS, Sens. Actuators B-Chem., 197, 20 (2014)
Rosas JM, Bedia J, Rodriguez-Mirasol J, Cordero T, Ind. Eng. Chem. Res., 47(4), 1288 (2008)
Suresh JRP, Chandrasekaran V, Pol. J. Chem. Tech., 14, 88 (2012)
Rouquerol J, Avnir D, Fairbridge CW, Pure Appl. Chem., 66, 1739 (1994)
Thommes M, Guillet-Nicolas R, Cychosz KA, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 349 (2015).
Lagergren S, Svenska K, Vetensk Akad. Handl., 24, 1 (1898).
Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
Freundlich HMF, Z. Phys. Chem., 57, 385 (1906)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로